First, create the directory "C:\Maple\lib" and open the file "WalshPaleyModule.mw" with Maple 17 or later version.
After running "WalshPaleyModule.mw" the package file "WalshPaleyModule.m" is created in the directory.
Create a new Maple worksheet and type the following commands.
> restart:
libname:="C:\\Maple\\lib",libname:
with (WalshPaley);
[AddValues, CesaroMFunc, CesaroMVal, DiriFunc, DiriVal, FCoeff, FCoeffs, FSumFunc,
FSumVal, FSumsVal, FejerMFunc, FejerMVal, FejerMsVal, GetDim, GetHadamard, IntValues, J, KCFunc, KCVal, KFunc, KNorm, KVal, LebConst, NormValues, ProdValues, SFunc, SVal, SetDim, SumFunc, SumVal, WalshPFunc, WalshPTriangFunc, WalshPVal, lineplot, lineplot3d]
Command with (WalshPaley) loads the package and at the start we are able to use the Walsh-paley functions up to the index $2^{\wedge} 6-1=63$.
The function WalshPFunc (n, x) gives us the value of the Walsh-Paley function with index n at the point x .
Plot the Walsh-Paley function with index 34.
> plot(WalshPFunc $(34, x), x=0 . .1$, title=cat("Walsh-Paley function with index 34"), color="red",tickmarks=[[seq(i/16=i/16,i=1..16)],
default]);
Walsh-Paley function with index 34

[At this time we can not use system functions with indices greater than 63 .
Find the value of the Walsh-Paley function with index 70 at the point 0.3 .
> WalshPFunc (70,0.3);
70, "The specified value exceeds the current dimension, this should be less than", 64
To obtain the value above we have to set up the dimension (the number of generated system functions) in the module, because the current dimension is only $2^{\wedge} 6=64$.
With the command SetDim (m) we can set de dimension to the value $2^{\wedge} \mathrm{m}$.
$>$ SetDim(10):
WalshPFunc (70,0.3);

EThe command GetDim () gives us the value of the current dimension.
> GetDim();
1024

The dimension is essential for the functioning of the package WalshPaley.
The command SetDim (m) generates the list of Hadamard matrices of size $2^{\wedge} \mathrm{k}$ with respect to the Walsh-Paley system, where k is from 0 up to m .
The entry with indeces i and j of the Hadamard matrices of size $2^{\wedge} k$ with respect to the Walsh-Paley system is the value of the Walsh-Paley function with index $\mathrm{i}-1$ at the point $(\mathrm{j}-1) / 2^{\wedge} \mathrm{k}$.
The command GetHadamard (k) gives us the Hadamard matrices of size $2^{\wedge} \mathrm{k}$ with respect to the Walsh-Paley system.
Get the Hadamard matrix of size 16 with respect to the Walsh-Paley system.
> interface (rtablesize=16) : \#this command allows us to show matrices and vectors of large size.
GetHadamard (4) ;
$\left[\begin{array}{rrrrrrrrrrrrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1\end{array}\right]$

The command WalshPVal (n) gives us a row vector with the values of the Walsh-Paley function with index n at the dyadic intervals $\left[(\mathrm{i}-1) / 2^{\wedge} \mathrm{k}, \mathrm{i} / 2^{\wedge} \mathrm{k}\left[\right.\right.$, where $2^{\wedge}(\mathrm{k}-1)<=\mathrm{n}<2^{\wedge} \mathrm{k}$.
The size of the vectorWalshPVal (n) is appropriate to the value of n, and not to the current dimension.
Get the vectorWalshPVal (n) for $\mathrm{n}=5$ and $\mathrm{n}=13$.
[> WalshPVal (5) ;WalshPVal (13) ;

$$
\begin{align*}
& {\left[\begin{array}{llllllll}
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1
\end{array}\right]} \tag{6}
\end{align*}
$$

When considering step functions as a vector we greatly speed up the calculations.
Some procedures use this new approach, for intance to calculate the integral and the Lp-norm.

LCalculate the integral the L1-norm and the L2-norm of and the Walsh-Paley function with index 40.
[> IntValues (WalshPVal (40)) ;NormValues (WalshPVal (40)) ;NormValues [2] (WalshPVal (40));

The procedure lineplot is able to plot step functions with the vector of its values.
Plot the Walsh-Paley function with index 34
[> lineplot(WalshPVal (34), title=cat("Walsh-Paley function with index 34"), color="red", tickmarks=[[seq(i/8=i/8,i=1..8)],default], axesfont=[TIMES,ROMAN,14],tozero);

Walsh-Paley function with index 34

[The following animation shows the effectiveness of the new approach.
$>$ SetDim(9) :
plots [display] (seq(lineplot(WalshPVal (n), tozero, title=cat("n=",
n), color="blue", tickmarks=[[seq(i/8=i/8,i=1..8)], default]), n=0.
.511), insequence=true); $\mathrm{n}=0$

The command SumVal (sor) gives us a row vector with the values of the linear combination of the first system functions with the nunbers in the list sor.
This linear combination is called a Walsh polynomial with respect to the Walsh-Paley sytem.
With the option floating the command numerically evaluates all expressions, thus it makes the calculations faster.
The procedure SumFunc (sor, x) makes a function with the values of SumVal (sor).
Plot the first 5 Walsh-Paley functions and list its values.

$$
\left[\begin{array}{llllllll}
5 & 3 & 1 & -1 & 1 & -1 & 1 & -1 \tag{8}
\end{array}\right]
$$

Plot the Walsh polynomial with coefficients $2,3,0,1,-5,1,2$ and list its values.
> lineplot(SumVal ([2,3,0,1,-5,1,2]), color="red",tickmarks=[[seq (i/8=i/8,i=1..8)],default],tozero); SumVal ([2,3,0,1,-5,1,2]);

$$
\left[\begin{array}{llllllll}
4 & 8 & -2 & 10 & -6 & 2 & -8 & 8
\end{array}\right]
$$

Triangular functions are the integral functions of the Walsh-Paley functions.
The function WalshPTriangFunc (n, x) gives us the value of the triangular function with index n at the point x .
Plot the triangular function with index 34 .
$>$ plot(WalshPTriangFunc $(34, x), x=0 . .1$, title=cat("Walsh-Paley
function with index 34"), color="red", numpoints=2000,tickmarks=[[seq(i/16=i/16,i=1..16)],default]);

Walsh-Paley function with index 34

[The matrix of the Fourier-coefficients of triangular functions is obtained as follows:
$>$ J (3) ;
$\left[\begin{array}{cccccccc}\frac{1}{2} & -\frac{1}{4} & -\frac{1}{8} & 0 & -\frac{1}{16} & 0 & 0 & 0 \\ \frac{1}{4} & 0 & 0 & -\frac{1}{8} & 0 & -\frac{1}{16} & 0 & 0 \\ \frac{1}{8} & 0 & 0 & 0 & 0 & 0 & -\frac{1}{16} & 0 \\ 0 & \frac{1}{8} & 0 & 0 & 0 & 0 & 0 & -\frac{1}{16} \\ \frac{1}{16} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{16} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{16} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{16} & 0 & 0 & 0 & 0\end{array}\right]$

