
WALSH FUNCTIONS AND HADAMARD MATRICES

RODOLFO TOLEDO

Abstract. The aim of this work is to summarize the basic properties of the

three main systems consisting of Walsh functions in the theory of Fourier anal-

ysis. These systems are the Walsh-Paley system, the original Walsh system and
the Walsh-Kaczmarz system. We study the relations between them focused

on the construction on Hadamard matrices. Finally, we give some formulae

which make it possible the fast calculation of Dirichlet and Fejér kernels based
on these systems.

1. Systems consisting of Walsh functions

In the classical Fourier theory the so-called trigonometric system is used for
approximation. Instead of trigonometric functions, the dyadic harmonic analysis
uses functions which take only values 1 and -1 on the interval [0, 1[. For instance,
consider the function

r(x) :=

{
1 x ∈ [0, 12 [

−1 x ∈ [ 12 , 1[

and extend it to the real numbers R by periodicity 1. The extended function r
allows us to introduce the concept of Rademacher system given by the functions

rk(x) := r(2kx) (k ∈ N, x ∈ [0, 1[),

where N is the set of non-negative integers.

Figure 1. The Rademacher function r3

2010 Mathematics Subject Classification. 42C10.
Key words and phrases. Fourier analysis, the original Walsh system, Walsh-Paley system,

Walsh-Kaczmarz system, Hadamard matrices, Dirichlet kernels, Fejér kernels.

Research supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051.
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Rademacher functions take alternatively the values 1 and -1, moreover rk is
constant on the dyadic intervals

Ik+1(i) :=

[
i− 1

2k+1
,

i

2k+1

[
(i = 1, . . . , 2k+1)

and
rk(x) = sgn(sin(2k+1πx)) (x ∈ [0, 1[)

with the exception of dyadic numbers of the form i
2k+1 , where 0 ≤ i < 2k+1.

The fact that the Rademacher function rk takes exactly 2k times the value 1 and
2k times the values -1 on intervals with the same measure implies that∫ 1

0

rk(x) dx = 0

and for the same reason, the integral of rk is also zero on the sets Il+1(i) where
l < k and 1 ≤ i ≤ 2l+1. Thus,∫ 1

0

rk(x)rl(x) dx =

2l+1∑
i=1

∫
Il+1(i)

rk(x)rl(x) dx

=

2l+1∑
i=1

rl

(
i− 1

2l+1

)∫
Il+1(i)

rk(x) dx = 0.

Since r2k ≡ 1 for all k ∈ N, the Rademacher system is orthonormal on L2([0, 1[).
However, we can prove similarly the fact that the integral on [0, 1[ of the product

of arbitrary finite many Rademacher functions is also zero, from which it follows
that the Rademacher system is not complete on L2([0, 1[). Indeed, the function r0r1
is orthogonal to any Rademacher function. We call Walsh function the product
of finite many Rademacher functions, but it was not the original definition. A
system consisting of all Walsh functions is an orthonormal and complete system on
L2([0, 1[).

The original Walsh system was introduced by Walsh [7] in 1923. His defini-
tion was recursive and probably he did not known the Rademacher system intro-
duced a year before. In order to write the original Walsh system as the product of
Rademacher functions we introduce the following notation.

Every n ∈ N can be uniquely expressed as

n =

∞∑
k=0

nk2k,

where nk = 0 or nk = 1 for all k ∈ N. This allows us to say that the se-
quence (n0, n1, . . . ) is the dyadic expansion of n. Similarly the dyadic expansion
(x0, x1, . . . ) of a real number x ∈ [0, 1[ is given by the sum

x =

∞∑
k=0

xk
2k+1

,

where xk = 0 or xk = 1 for all k ∈ N. This expansion is not unique if x is a dyadic
rational. When this situation occurs we choose the expansion terminates in zeros.
That is, the expansion with an index l such that xk = 0 for all k > l. By the dyadic
expansion Rademacher functions can be expressed as follows

rk(x) = (−1)xk (x ∈ [0, 1[, k ∈ N).
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The original Walsh system φ can be written by Rademacher functions as follows

φn(x) =

∞∏
k=0

r
nk+nk+1

k (x) (x ∈ [0, 1[, n ∈ N)

Paley [3] was first to recognize that Walsh functions are products of Rademacher
functions. In 1932 he introduced the system ω called Walsh-Paley system by

ωn(x) :=

∞∏
k=0

rnk

k (x) (x ∈ [0, 1[, n ∈ N).

In order to find a connection between the arrangement of the original Walsh system
an the Walsh-Paley system we define the dyadic sum of a pair of non-negative
integers n and m by

n⊕m =

∞∑
k=0

|nk −mk|2k,

where (n0, n1, . . . ) and (m0,m1, . . . ) are de dyadic expansion of the integers n andm
respectively. Since the integer quotient

[
n
2

]
has the dyadic expansion (n1, n2, . . . ),

we obtain immediately from the definition of the systems φ and ω the relation

(1) φn(x) = ωn⊕[n
2 ](x) (x ∈ [0, 1[, n ∈ N).

Conversely, denote by
⊕∞

k=0

[
n
2k

]
the dyadic sum of all of the integer quotients[

n
2k

]
, where k = 0, 1, . . . . Thus, the dyadic expansion of

⊕∞
k=0

[
n
2k

]
is

(n0 + n1 + n2 + . . . , n1 + n2 + n3 + . . . , n2 + n3 + n4 + . . . , . . . ),

from which we obtain the relation

(2) ωn(x) = φ⊕∞
k=0[ n

2k
](x) (x ∈ [0, 1[, n ∈ N).

The original Walsh system satisfies the requirements for ψα systems defined by
Gát [1] in 1991. It means the fact that the original Walsh system can be written as

φn = ωnαn, where the functions αn are composed of the product of functions αjk
(k, j ∈ N) defined on the interval [0, 1[ with the following properties:

• for every k ∈ N the functions αjk are constant on the dyadic intervals Ik(i)

(i = 1, 2, . . . , 2k) for all j ∈ N.

• |αjk| = 1 and αj0 = α0
k = αjk(0) = 1 for all k, j ∈ N.

• by the notation n(k) =
∑∞
i=k ni2

i define the functions αn as the product

αn(x) :=

∞∏
k=0

αn
(k)

k (x) (x ∈ [0, 1[).

Indeed, let αjk = rjkk−1 for all positive integer k and for all j ∈ N with dyadic

expansion (j0, j1, . . . ). Thus, the functions αjk have the properties above and

αn(x) =

∞∏
k=0

r
nk+1

k (x) (x ∈ [0, 1[)

from which we obtain the relation φn = ωnαn for all n ∈ N.
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The third system studied in this paper is the so-called Walsh-Kaczmarz system
κ introduced by Šneider [6] in 1948.

κ0(x) := 1, κn(x) := rA(x)

A−1∏
k=0

r
nA−k−1

k (x) (n ∈ N, x ∈ [0, 1[).

where 2A ≤ n < 2A+1. For any k ∈ N define the map τk : N→ N by the formula

τk(n) :=

k−1∑
i=0

nk−i−12i +

∞∑
i=k

ni2
i.

Note that τk reverses the first k bites of the dyadic expansion of every non-negative
integer, i.e. the dyadic expansion of τk(n) is

(nk−1, nk−1, . . . , n1, n0, nk, nk+1, . . . ),

from which we have κ0(x) = ω0(x) and

(3) κn(x) = ωτk(n)(x), ωn(x) = κτk(n)(x) (x ∈ [0, 1[)

for all positive integer n such that 2k ≤ n ≤ 2k+1.
Similarly we can also define τk as a bit-reversing transformation on the dyadic

expansion of any x ∈ [0, 1[, that is τk : [0, 1[→ [0, 1[,

τk(x) :=

k−1∑
i=0

xk−i−1
2i+1

+

∞∑
i=k

xi
2i+1

(k ∈ N).

In this case τk is a measure-preserving transformation such that τk(τk(x)) = x for
all k ∈ N and x ∈ [0, 1[. Moreover,

(4) κ2k+m(x) = rk(x)ωτk(m)(x) = rk(x)ωm(τk(x)) (x ∈ [0, 1[)

where 0 ≤ m < 2k.

2. Hadamard matrices

Hadamard matrices are square matrices with orthogonal rows whose entries are
either 1 or -1. Due to the fact that systems φ, ω and κ consist of orthogonal
functions with values 1 and −1 which are piecewise-constant on the dyadic intervals
Ik(j) (j = 1, 2, . . . , 2k) for all indexes n < 2k, matrices O(k), W(k) and K(k) with
entries

O
(k)
i,j := φi−1

(
j − 1

2k

)
, W

(k)
i,j := ωi−1

(
j − 1

2k

)
, K

(k)
i,j := κi−1

(
j − 1

2k

)
(i, j = 1, 2, . . . , 2k) are Hadamard matrices of type 2k × 2k for all k ∈ N. Thus,
we call matrices O, W and K Hadamard-Walsh, Hadamard-Paley and Hadamard-
Kaczmarz matrices respectively.

For a fixed k ∈ N matrices O(k), W(k) and K(k) have the same rows in different
order. Relations (1), (2) and (3) give us the way to rearrange Hadamard matri-
ces into each others. Another way to construct Hadamard matrices is based on
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iteration. In order to simplify the notations define the Kronecker product of the
matrices A and B by

A⊗B :=


a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

...
an,1B an,2B . . . am,mB


where ai,j (i = 1, 2, . . . , n and j = 1, 2, . . . ,m) are the entries of the matrix A.

First, we deal with Hadamard-Paley matrices. By the definition of the Walsh-
Paley system it is not difficult to prove that

ωn = rkωn−2k (2k ≤ n < 2k+1)

from which we have

W(k+1) =

(
W(k) ⊗

(
1 1

)
W(k) ⊗

(
1 −1

)) (k ∈ N).

In other words, the first half of W(k+1) is obtained duplicating all elements of W(k)

and the second half is similar, but we have to change the sign of every second
elements. We can see this fact in the following example.

W(2) =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



W(3) =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1


In case of the original Walsh system, the first half of O(k+1) is also obtained

duplicating all of elements of O(k). By the definition of φ we can prove that

φn = rkrk−1φn−2k (2k ≤ n < 2k+1).

The values of the piecewise-constant function rkrk−1 on the dyadic intervals Ik+1(j)
(j = 1, 2, . . . , 2k+1) form a consecutive sequence of numbers 1,−1,−1, 1 repeated
2k−1 times. For this reason the second half of O(k+1) is also similar to the first half,
but here we have to change the signs of the elements according with the sequence
mentioned before, so in every segment of four element the sign of the second and
third elements must be changed. We can see this fact in the following example.

O(2) =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


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O(3) =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


However, the situation is quite different for Hadamard-Kaczmarz matrices, be-

cause we can not write an adequate relation for κn and κn−2k . However, by (4) we
have

(5) κn = rkωτk(n−2k) (2k ≤ n < 2k+1).

The relation above gives us the opportunity to obtain the second half of the matrix
K(k+1) from the Kronecker product of the bit-reversal rearrangement of the matrix
W(k) and the matrix (1 − 1), but this method, at first glance, it does not seem
appropriate because it needs several calculations. The introduction of Hadamard
matrices H solves this problem. These matrices are defined recursively as

H(0) := (1), H(1) :=

(
1 1
1 −1

)
, H(k+1) := H(1) ⊗H(k),

for every positive integer k. Moreover, for any i = 0, 1, . . . , 2k − 1 denote by h
(k)
i

the piecewise-constant function on the dyadic intervals Ik(j) (j = 1, 2, . . . , 2k) such
that

h
(k)
i (

j

2k
) = H

(k)
i+1,j .

By the Kronecker product the matrix

H(k) =

(
H(k−1) H(k−1)

H(k−1) −H(k−1)

)
is partitioned into four blocks. Fix a 0 ≤ i < 2k and x ∈ [0, 1[ with expansion
(i0, i1, . . . ) and (x0, x1, . . . ) respectively. The binary coefficients ik−1 and x0 deter-

mine the block in which the value of h
(k)
i (x) appears. In particular

h
(k)
i (x) = −1ik−1x0h

(k−1)
i−ik−12k−1(x− x0

2
) = r

ik−1

0 (x)h
(k−1)
i−ik−12k−1(x− x0

2
),

from which we obtain by iteration the formula

(6) h
(k)
i (x) = r

ik−1

0 (x)r
ik−2

1 (x) . . . ri0k−1(x) = ωτk(i)(x) (x ∈ [0, 1[).

Hence we can rewrite (5) as follows

(7) κn = rkh
(k)

n−2k (2k ≤ n < 2k+1)

to obtain

K(k+1) =

(
K(k) ⊗

(
1 1

)
H(k) ⊗

(
1 −1

)) (k ∈ N).

We can see this fact in the following example.

K(2) =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 H(2) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


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K(3) =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1


The Kronecker product is implemented in most Computer Algebra Systems

which allows the a fast calculation of Hadamard matrices H. For this reason,
it is especially interesting how to obtain Hadamard matrices W(k), O(k) and K(k)

as the row rearrangement of Hadamard matrices H(k).
By (6) and the property τk(τk(i)) = i we have

(8) ωi = h
(k)
τk(i)

(i = 0, 1, . . . , 2k − 1).

Thus, we obtain Hadamard-Paley matrices from the relation

W
(k)
i = H

(k)
τk(i−1)+1 (i = 1, . . . , 2k).

By (1) and (6) we have

(9) φi = ωi⊕[ i
2 ] = h

(k)

τk(i⊕[ i
2 ])

(i = 0, 1, . . . , 2k − 1).

Thus, we obtain Hadamard-Walsh matrices from the relation

O
(k)
i = H

(k)

τk((i−1)⊕[ i−1
2 ])+1

(i = 1, . . . , 2k).

By (3) and (6) we have

(10) κ0 = h
(k)
0 , κi = ωτA(i) = h

(k)
τk(τA(i)) (i = 1, . . . , 2k − 1),

where A is the range of the positive integer i, i.e. A := max{k ∈ N : ik = 1}. Since
A < k, it is not difficult to see that the number τk(τA(i)) has the dyadic expansion

(0, 0, . . . , 0︸ ︷︷ ︸
k−A−1

, 1, i0, i1, . . . , iA−1︸ ︷︷ ︸
A

),

hence τk(τA(i)) = (2(i − 2A) + 1)2k−A−1. Thus, we obtain Hadamard-Kaczmarz
matrices from the relation

K
(k)
1 = H

(k)
1 , K

(k)
i+1 = H

(k)

(2(i−2A)+1)2k−A−1 (i = 1, . . . , 2k − 1).

3. Dirichlet kernels

Dirichlet kernels are the finite sums of system functions. In particular denote

(11) Dψ
n (x) :=

n−1∑
i=0

ψi(x) (x ∈ [0, 1[, n ∈ N),

where ψ represents one of the system φ, ω or κ. Obviously, in most cases the kernels
Dφ
n, Dω

n and Dκ
n are different functions, but they are equal if n = 2k (k ∈ N), since

for φ, ω or κ system functions with index less than 2k are the same, but with
different enumeration (see Section 1). Denote this common Dirichlet kernel by
D2k . The values of these kernels are very simple (see [4]).
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Lemma 1 (Paley’s lemma).

D2k =

{
2k x ∈ Ik(1)

0 x ∈ [0, 1[\Ik(1)

Figure 2. The Dirichlet kernel D8

Paley’s lemma can be proved by iteration as follows. For any positive integer k
we have

D2k −D2k−1 =

2k−1∑
i=2k−1

ωi =

2k−1−1∑
i=0

ω2k−1+i =

2k−1−1∑
i=0

rk−1ωi = rk−1D2k−1 .

Thus,

(12) D2k(x) = (1 + rk−1(x))D2k−1(x) (x ∈ [0, 1[).

By the dyadic expansion (x0, x1, . . . ) of x

• if xk−1 = 0 then rk−1(x) = 1, so D2k(x) = 2D2k−1(x),
• if xk−1 = 1 then rk−1(x) = −1, so D2k(x) = 0.

Since D20 = ω0 = 1, D2k(x) is not zero if and only if x0 = x1 = · · · = xk−1 = 0
and then D2k(x) = 2k from which the statement of Paley’s lemma holds.

Paley’s lemma allows us to obtain a fast iteration for Dirichlet kernels in case of
systems ω and φ. Let n = 2k +m where 0 ≤ m < 2k. Thus,

Dω
n =

2k−1∑
i=0

ωi +

n−1∑
i=2k

ωi = D2k +

m−1∑
j=0

ω2k+j = D2k +

m−1∑
j=0

rkωj

from which we have

(13) Dω
n = D2k + rkD

ω
m.

Similarly we can prove

(14) Dφ
n = D2k + rkrk−1D

φ
m.

It is not possible to obtain a similar iteration formula for the Walsh-Kaczmarz
system. Notwithstanding, the relation (7) allows us to find another way

(15) Dκ
n = D2k +

m−1∑
j=0

κ2k+j = D2k + rk

m−1∑
j=0

h
(k)
j .
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In other words, we obtain a fast calculation from Dirichlet kernels Dκ from the
sums of the rows of Hadamard matrix H(k) instead K(k+1) which has four times
more entries.

We remark that equations (13), (14) and (15) are also valid for m = 2k.
It is possible to obtain Dirichlet kernels based on different systems from each

other. In Section 1 we show that φ is a ψα system where the functions αn are given
by

αn(x) =

∞∏
k=0

r
nk+1

k (x) (x ∈ [0, 1[).

In [2] Gát gave the connexion between Dirichlet kernels concerning ψα systems and
the Walsh system (or a Vilenkin system in a more generalized form). Through this
connexion

(16) Dφ
n(x) = αn(x)Dω

n(x) (x ∈ [0, 1[)

holds. Figure 3 shows the Dirichlet kernels Dω
27 and Dφ

27 plotted in the same

graphic to illustrate (16). We shift down a little bit the graph of Dφ
27 to avoid the

superposition of the lines.

Figure 3. Dirichlet kernels with index 27 for the Walsh-Paley
(red) and the original Walsh (blue) system

The approach for Dirichlet kernels of the Walsh-Kaczmarz system is based on
the transformation τk(x) where x ∈ [0, 1[. By (6) and (15) we have

Dκ
n(x) = D2k(x) + rk(x)

m−1∑
j=0

ωj(τk(x)) (x ∈ [0, 1[).

Since the functions D2k(x) and rk(x) do not depend on the permutation of the
first k coefficient of the dyadic expansion of x, we obtain D2k(x) = D2k(τk(x)) and
rk(x) = rk(τk(x)), hence

(17) Dκ
n(x) = Dω

n(τk(x)) (x ∈ [0, 1[).

Figure 4 shows the Dirichlet kernels Dω
44 and Dκ

44 plotted in the same graphic to
illustrate (17). We shift down a little bit the graph of Dκ

44 to avoid the superposition
of the lines.
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Figure 4. Dirichlet kernels with index 44 for the Walsh-Paley
(red) and the Walsh-Kaczmarz (blue) system

Finally, we deal with the Lebesgue constants of the systems above, i.e. the
L1-norm of Dirichlet kernels. In this regard denote

Lψn :=

∫ 1

0

|Dψ
n (x)| dx (n ∈ N).

where ψ represents one of the system φ, ω or κ. By (16) we obtain

Lφn :=

∫ 1

0

|Dφ
n(x)| dx =

∫ 1

0

|αn(x)Dω
n(x)| dx =

∫ 1

0

|Dω
n(x)| dx = Lωn ,

since |αn(x)| = 1 for all n ∈ N and x ∈ [0, 1[. On the other hand, by (17) and from
the fact that the transformation τk is measure-preserving we obtain

Lκn :=

∫ 1

0

|Dκ
n(x)| dx =

∫ 1

0

|Dω
n(τk(x))| dx =

∫ 1

0

|Dω
n(x)| dx = Lωn ,

for all n ∈ N and x ∈ [0, 1[, where k is given by the relation 2k ≤ n < 2k+1.
In summary, Lebesgue constants of the systems with which we deal in this work

are the same. For his reason, we use the same notation Ln for any of three cases.
Moreover, Ln can be obtained recursively (see [4]) as follows

L2k+m = 1 + Lm −
m

2k

for all k ∈ N and 2k ≤ m < 2k+1.

Figure 5. The Lebesgue constants
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4. Fejér kernels

Fejér kernels are the average of Dirichlet kernels. In particular define

Kψ
n (x) :=

1

n

n∑
i=1

Dψ
n (x) (x ∈ [0, 1[, n ∈ P,Kψ

0 := 0),

where ψ represents one of the system φ, ω or κ and P the set of all positive integers.
Fejér kernels can be also obtained directly from the system functions as follows

Kψ
n (x) =

n−1∑
i=0

(
1− i

n

)
ψi(x) (x ∈ [0, 1[, n ∈ P).

First we focus our attention on the study of Fejér kernels with indices which are
the powers of 2. By (13) for the Walsh-Paley system (see [4]) we have

2kKω
2k − 2k−1Kω

2k−1 =

2k∑
i=2k−1+1

Dω
i =

2k−1∑
i=1

Dω
2k−1+i =

2k−1∑
i=1

(D2k−1 + rk−1D
ω
i )

= 2k−1D2k−1 + rk−1

2k−1∑
i=1

Dω
i = 2k−1D2k−1 + rk−12k−1Kω

2k−1 .

Thus,

(18) 2kKω
2k(x) = 2k−1D2k−1(x) + (1 + rk−1(x))2k−1Kω

2k−1(x) (x ∈ [0, 1[).

By the dyadic expansion (x0, x1, . . . ) of x

• suppose xk−1 = 0. Then rk−1(x) = 1, so 2kKω
2k(x) = 2k−1D2k−1(x) +

2kKω
2k−1(x). Hence, by Paley’s lemma, if there exists an index j < k − 1

such that xj = 1 then

Kω
2k(x) = Kω

2k−1(x),

but if x0 = x1 = · · · = xk−2 = 0 then by (4) and the fact that Dω
i (0) = i

for all i ∈ N, we obtain

Kω
2k(x) =

1

2k

2k∑
i=1

i =
2k + 1

2
.

• suppose xk−1 = 1. Then rk−1(x) = −1, so 2kKω
2k(x) = 2k−1D2k−1(x).

Hence, by Paley’s lemma, if there exists another index j < k − 1 such that
xj = 1 then

Kω
2k(x) = 0,

but if x0 = x1 = · · · = xk−2 = 0 then

Kω
2k(x) = 2k−2.

Thus, by iteration it is not difficult to see that Kω
2k(x) is not zero if and only if

x0 = x1 = · · · = xk−1 = 0, i.e. x ∈ Ik(1), or there is only one index j < k such that
xj = 1, i.e x ∈ Ik(2k−j−1 + 1). In particular

(19) Kω
2k(x) =


2k+1

2 x ∈ Ik(1)

2k−j−2 x ∈ Ik(2j + 1), j = 0, 1, . . . , k − 1

0 otherwise.
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Figure 6. The Fejér kernel Kω
32

By (14) for the original Walsh system we have

2kKφ
2k
− 2k−1Kφ

2k−1 =

2k∑
i=2k−1+1

Dφ
i =

2k−1∑
i=1

Dφ
2k−1+i

=

2k−1∑
i=1

(D2k−1 + rk−1rk−2D
φ
i )

= 2k−1D2k−1 + rk−1rk−2

2k−1∑
i=1

Dφ
i = 2k−1D2k−1 + rk−1rk−22k−1Kφ

2k−1 .

Thus,
(20)

2kKφ
2k

(x) = 2k−1D2k−1(x) + (1 + rk−1(x)rk−2(x))2k−1Kφ
2k−1(x) (x ∈ [0, 1[).

By the dyadic expansion (x0, x1, . . . ) of x

• suppose xk−1 = 0.
– if xk−2 = 1 then rk−1(x)rk−2(x) = −1 and D2k−1(x) = 0, hence

(21) Kφ
2k

(x) = 0.

– if xk−2 = 0 then rk−1(x)rk−2(x) = 1, so 2kKφ
2k

(x) = 2k−1D2k−1(x) +

2kKφ
2k−1(x). Hence, by Paley’s lemma, if there exists an index j <

k − 2 such that xj = 1 we have Kφ
2k

(x) = Kφ
2k−1(x). By iteration, if

j := max{i < k − 2: xi = 1} then

Kφ
2k

(x) = Kφ
2k−1(x) = · · · = Kφ

2j+2(x) = 0,

since Kφ
2j+2(x) satisfies the conditions of (21). On the other hand,

similarly to the Walsh-Paley system, if x0 = x1 = · · · = xk−3 = 0 then

Kφ
2k

(x) =
2k + 1

2
.

• suppose xk−1 = 1.
– if xk−2 = 1 then rk−1(x)rk−2(x) = 1 and D2k−1(x) = 0, hence

Kφ
2k

(x) = Kφ
2k−1(x).

– if xk−2 = 0 then rk−1(x)rk−2(x) = −1, so 2kKφ
2k

(x) = 2k−1D2k−1(x).
Hence, by Paley’s lemma, if there exists an index j < k − 2 such that
xj = 1 then

Kφ
2k

(x) = 0,

but if x0 = x1 = · · · = xk−3 = 0 then

Kφ
2k

(x) = 2k−2.
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Thus, by iteration it is not difficult to see that Kφ
2k

(x) is not zero if and only if
x0 = x1 = · · · = xk−1 = 0, i.e x ∈ Ik(1), or there is an index j < k such that
x0 = x1 = · · · = xj−1 = 0 and xj = xj+1 = · · · = xk−1 = 1, i.e. x ∈ Ik(2k−j). In
particular

(22) Kφ
2k

(x) =


2k+1

2 x ∈ Ik(1)

2k−j−1 x ∈ Ik(2j), j = 1, 2, . . . , k

0 otherwise.

Figure 7. The Fejér kernel Kφ
32

Finally, by (15) for the Walsh-Kaczmarz system (see [5]) we have

2jKκ
2j (x)− 2j−1Kκ

2j−1(x) =

2j∑
i=2j−1+1

Dκ
i (x) =

2j−1∑
i=1

Dκ
2j−1+i(x)(23)

=

2j−1∑
i=1

(D2j−1(x) + rj−1(x)Dω
i (τj−1(x)))(24)

= 2j−1D2j−1(x) + rj−1(x)

2j−1∑
i=1

Dω
i (τj−1(x))(25)

= 2j−1D2j−1(x) + 2j−1rj−1(x)Kω
2j−1(τj−1(x))(26)

for all x ∈ [0, 1[. Moreover, 20Kκ
20 = 1. Thus, by the sum of the equations above

for j from 0 to k − 1 we obtain

(27) Kκ
2k(x) =

1

2k
+

k−1∑
j=0

2j−kD2j (x) + 2j−krj(x)Kω
2j (τj(x)) (x ∈ [0, 1[).

Equation (27) means that the construction of Fejér kernels with index 2k for the
Walsh-Kaczmarz system differs from that used for the Walsh-Paley and the original
Walsh systems. In the last two cases, we obtain Fejér kernels with index 2k directly
from functions which take frequently the value zero, that is from (19) and (22). For
the Walsh-Kaczmarz system we have to sum functions with this property. Indeed,
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if x ∈ Ij(2i + 1) then τj(x) ∈ Ij(2j−i−1 + 1), hence by (19) we have

(28) Kω
2j (τj(x)) =


2j+1
2 x ∈ Ij(1)

2i−1 x ∈ Ij(2i + 1), i = 0, 1, . . . , j − 1

0 otherwise,

for all j ∈ N. Thus,

D2j (x) + rj(x)Kω
2j (τj(x)) =



3·2j+1
2 x ∈ Ij+1(1)

2j−1
2 x ∈ Ij+1(2)

2i−1 x ∈ Ij+1(2i+1 + 1), i = 0, 1, . . . , j − 1

−2i−1 x ∈ Ij+1(2i+1 + 2), i = 0, 1, . . . , j − 1

0 otherwise.

Figure 8. D24(x) + r4(x)Kω
24(τ4(x))

We discuss now Fejér kernels with general n = 2k +m indexes. We start by the
decomposition

nKψ
n =

2k∑
i=1

Dψ
i +

n∑
i=2k+1

Dψ
i = 2kKψ

2k
+

m∑
i=1

Dψ
2k+i

where ψ is one of the system φ, ω or κ. Thus by (13) we have

(29) nKω
n = 2kKω

2k +mD2k + rkmK
ω
m,

and by (14) we have

(30) nKφ
n = 2kKφ

2k
+mD2k + rkrk−1mK

φ
m,

which give us a useful recursive formulae to obtain Fejér kernels based on the
Walsh-Paley and the original Walsh system.

On the other hand, by (15) we have

(31) nKκ
n = 2kKκ

2k +mD2k + rk

m−1∑
i=0

(m− i)h(k)i ,

which gives us a useful formula in to obtain Fejér kernels based on the Walsh-
Kaczmarz system from Hadamard matrices.
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We remark the formulae (29), (30) and (30) are also valid for m = 2k. Comparing
the formula (30) for m = 2k with (23) for j = k + 1 we have

2k−1∑
i=0

(2k − i)h(k)i (x) = 2kKω
2k(τk(x)) (k ∈ N, x ∈ [0, 1[).

Since

2k−1∑
i=0

(2k − i)h(k)i = 2k
2k−1∑
i=0

h
(k)
i −

2k−1∑
i=0

ih
(k)
i = 2kD2k −

2k−1∑
i=0

ih
(k)
i

we have by (28) the formula

2k−1∑
i=0

ih
(k)
i (x) = 2kD2k(x)− 2kKω

2k(τk(x))

=


22k−1 − 2k−1 x ∈ Ik(1)

−2k+i−1 x ∈ Ik(2i + 1), i = 0, 1, . . . , k − 1

0 otherwise.

which gives us an interesting formula with respect to Hadamard matrices H(k).
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