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Preface

The theory of abstract harmonic analysis has been a relevant progress
in the last decades. An increasing number of mathematicians have
adopted the point of view that the most appropriate setting for the
development of the theory of Fourier analysis is furnished by the class
of all locally compact groups. Starting of the classical theory of Fourier
series and integrals the relative ease with which the basic concepts
and theorems can be transferred to this general context in the abelian
case is not valid for the non-commutative case. For instance, it is
well known that the Riemann-Lebesgue lemma is not valid for non-
commutative cases.

The structure of topological groups was extensively studied in the
years 1925-1940, and the subject is far from dead even today. The
study of the direct products of topological groups have been started
since the beginning of the theory of topological groups. Pontryagin [20]
examined very extensively the structure of countable direct products
treated special cases of finite direct products. Vilenkin [1| obtained
several results for the commutative cases.

The dyadic group is the simplest but nontrivial model of the com-
plete product of finite groups. Representing the characters of the
dyadic group ordered in the Paley’s sense, we obtain the Walsh sys-
tem. This system is applied in the processing of data but has an
interesting theoretical point of view.
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A natural generalization on the Walsh-Paley system is the Vilenkin
system introduced by Vilenkin [36] in 1947. He used the set of all cha-
racters of the complete product of arbitrary cyclic groups to obtain the
commutative case. In Hungary a dyadic analysis team works leaded
by Schipp having several results in this theory. For instance, they
proved that the Paley theorem is true for an arbitrary Vilenkin group,
i.e. the partial sums of the Vilenkin-Fourier series of a function in
LP(G) (1 < p < o0) converge in the appropriate norm to the function
(Young [39], Schipp [21], Simon [26]).

The example above is not true for all cases if we take the com-
plete product of arbitrary finite group (not necessarily commutative).
The study of this groups is the aim of this work. These studies were
appeared in [10] by Gat and Toledo first and they obtained not only
negative results for this groups, because they also proved the conver-
gence in LP-norm of the Fejér means of Fourier series when p > 1 in
the bounded case.

This work is organized as follows. The first chapter is introduc-
tory, introducing the topology, the measure and the system with which
we work. This kind of system is called (by the author) a representa-
tive product system because we use representation theory to collect
the functions appeared in it. The Weyl-Peter’s theorem ensure the
orthonormality and completeness in L? of this system. Representing
this system on the interval [0, 1] we plot and show relevant examples.
In this chapter we use the notation appeared in [13] and [14].

Chapter 2 summarizes the results of [10]. We introduce the basic
concepts of Fourier analysis and give the properties of the Dirichlet
kernels to study the convergence in norm of Fourier series and Fejér
means. We also introduce the concept of modulus of continuity to
give class of functions for which the partial sums of it’s Fourier series
converge to the function in L! or in the uniform norm. Finally, we
obtain an important positive result, i.e. if G is a bounded group, the
Fejér means of a function f € LP(G), 1 < p < oo converge to the
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function in LP-norm.

In Chapter 3 we estimate the Fourier coefficients which not neces-
sarily tend to zero, using the modulus of continuity of the function
and the uniform norm of the system. We specially study the functions
with bounded fluctuation. On the other hand we consider an inter-
esting class of functions, namely the ones that are constant on every
conjugacy classes. The system of characters of the representations is
complete in this class of functions, so we use characters to study the
absolute convergence of series constructed in this way.

Chapter 4 treats the general case of product system adapting the
results of Schipp [21] for the convergence in Hardy and BMO norms.
We use the convergence of operators with property A to study the
conjugate martingale transforms defined on not necessarily bounded
Vilenkin group. In this chapter the notation of the different Hardy
and BMO spaces is the same to the notation appeared in [38|.

Finally, the author would like to thank Professor Dr. F. Schipp for
his valuable ideas and Professor Dr. G. Géat for carefully reading this
work and for his several advices and remarks to improve this work.



PREFACE



Chapter 1

The structure of the complete
product of finite groups

In Section 1.1 we resume the elementary topological properties of com-
pact totally disconnected groups and specially the topology defined on
the complete product of finite groups (Proposition 1.1.1). Pontryagin
[20] studied heavily the structure of these groups. An ample resume
of the characteristics of compact totally disconnected groups appears
in [13, Chapter II]. In this section we also introduce the Haar mea-
sure with which we work. More about Haar measure appear in [13,
Chapter IV].

In Section 1.2 we state some facts about the representation the-
ory of compact, not necessarily abelian groups, closing this section
with the famous Weyl-Peter’s theorem 1.2.3. (see [14]). The state-
ments in Section 1.2 justify the notations in Section 1.3, where we
give the structure of the groups and introduce the concept of repre-
sentative product systems. Vilenkin [1]| investigated very extensively
the commutative cases. Some relevant results for product systems was
obtained by Schipp in [21]| and [22]. Approximation questions for the
non-abelian cases were studied first by Gét-Toledo in [10].

5
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Various examples of representative product systems appear in Sec-
tion 1.4 and 1.5 representing them on the interval [0, 1] using Fine’s
map. The Theorems 1.5.2 and 1.5.1 are proved by Morgenthaler [15]
for the Walsh group and also appear in the book [24]. Toledo resume
these results in [35] using the analogy with Vilenkin groups to show
the appearance of the studied systems on the interval [0, 1[ and utilize
the MAPLE software to compute that.

Throughout this work denote by N, R, C the set of non-negative
integers, real and complex numbers, respectively. Denote by |A| the
cardinal number of the set A. In order to simplicity we always use the
multiplication to denote the group operation and use the symbol e to
denote the identity of the groups. The notation which we used in this
chapter is similar to the one appeared in [13].

1.1 Facts about topology and measure

A topological group G is an entity which is both a group and a topologi-
cal space and the group operations and the topology are appropriately
connected, namely the mappings (z,y) — 2y of G x G onto G and
x — 2! of G onto G are continuous. The algebraic properties of the
group affect the topological properties of the space and vice versa. For
example, a topological group which satisfies the separation axiom 7Tj is
completely regular. In addition, an open basis 4l at the group identity
e gives an open base for G by the family {zU : =z € G, U € i) and
similarly by the family {Uz : x € G, U € il).

The subgroup H of a topological group G is also a topological
group with its relative topology as a subspace of G. Define a topology
of G/H by the following rule: the set X := {xH : x € X} is open
in G/H if an only if the set |J,.y«H is open in G. Then G/H is
a discrete topological space if an only if the H is open in G. If G is
compact the space, then G/H is also compact, so if H is open and
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compact, then G/H is a finite set with discrete topology. Let N be a
normal subgroup of G, then G/N is a topological group.

A subset of a topological space is connected if it is not the disjoint
union of two nonvoid open sets. A topological space is totally discon-
nected if all of its components are points. Component is a connected
subset which is properly contained in no other connected subset. A
topological space is 0-dimensional if the family of all open and closet
sets is an open basis for the topology.

Through this work (see 1.3) denote by G the complete direct pro-
duct of the finite groups Gy (K € N). Assume that all of groups G,
have the discrete topology and the topology of G is the topological
product of the discrete topologies. Thus

Proposition 1.1.1. G is an infinite compact totally disconnect group.
Hence

(a) G is a 0-dimensional topological group.
(b) the topology of G is metrizable.

(¢) G has a countable open basis G = Iy D Iy D ... at the identity
e consisting of open and closed normal compact totally disconnect
subgroups, where e is the intersection of this subgroups.

Let A be the smallest o-algebra of subsets of G which contain all
open subsets of G. The members of A are called the Borel sets of
G. A measure v defined on G is said to be regular if for every open
set U, we have v(U) = sup{v(F) : F is compact and F' C U}; for
all A € A, we have v(A) = inf{v(U) : Uisopenand U DO A}. If
v(zA) = v(Ax) = v(A) for all 2 € G and A € A, then v is said
to be two-sided invariant. Since G is compact there is an unique
non-negative regular measure ;o of the Borel sets of G which is two-
sided translation invariant and p(G) = 1. This measure is called the
normalized Haar measure of G.
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Proposition 1.1.2. Denote by my, := |Gy| the cardinal number of the
finite group Gy (k € N) and py, the corresponding normalized Haar
measure. Moreover, denoted by G the complete direct product of Gy
(k € N) with normalized Haar measure pi. Then

(a) for every set A € Gy and function f : G — C

i) = 20 and /G Fdp == 3 f)

z€Gy

(b) since the normalized Haar measure is unique, p is the product
measure of ux’s (k € N).

1.2 Representative functions

A representation U of a group G is a homomorphism of G into the
semigroup of all operators defined in some linear space E over an
arbitrary field F. That is, U : * — U, such that U, : £ — FE is a
linear transformation for all x € G and

Upy = U, U, (z,y € G).

The linear space E is called the representation space of U, and let the
dimension of a representation be the dimension of its own representa-
tion space.

We can assume that U, is the identity operator on E, because F is
the direct sum of invariant subspaces Fy and E; such that U,(Ey) =
{0} for all z € G, and U, is the identity operator on £}, hence we can
take F by Ej.

Throughout this work suppose that the representation space of all
representations is a reflexive complex Banach space which is a topo-
logical linear space under the metric and norm induced by the inner
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product (.,.). The representation U is called unitary if all of operators
U, are unitary, i.e. U, is a linear isometry of E onto E. A represen-
tation U with representation space FE is called irreducible if only the
spaces {0} and E are invariant under all operators U, (z € G).

We can define an equivalence relation in the set of all continuous
irreducible unitary representations of the group G in the following
manner. Two representations U and U’ with representation spaces E
and E' respectively are equivalent if there is a bounded linear isometry
T : E — FE’ such that

UT=TU, (z€@).

Denote by 3 the set of all equivalence classes induced by the above
relation. Y is called the dual object (3) of the group G. The common
dimension of all representations in the class ¢ € ¥ is denoted by d,.
All group have a trivial representation with dimension 1, namely the
one which is identically equal to 1. A representation with dimension
1 is called a character, i.e. a character is a mapping x : G — C such
that

X(zy) = x(@)x(y) (z,yeq@), Ix@)|=1 (zeq).
Proposition 1.2.1. Let G be a finite group. Then

(a) |X| is equal to the number of conjugacy class in G. (The system of
the conjugacy classes is a partition of G induced by the equivalence
relation: a ~ b if and only if 3x € G : a = xbx™!).

(b) if L={o1,01...00}, then |G| =d2 +d2, +---+ d?jlz‘.

(c) dy, is a divisor of |G| (1 <1i <|X]).

(d) if the group G is abelian, then |X| = |G| and all representations
of G are characters.
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(e) if the group G is not abelian, then there is a representation with
dimension greater than 1.

Proposition 1.2.2. Let G be the complete direct product of the finite
groups Gy, (k € N). Then

(a) since G is compact, the set ¥ is countable and the dimensions of
all representations of G are finite.

(b) U is a continuous irreducible representation of G if and only if U
is the tensor product of finite numbers of continuous irreducible
representations of distinct groups Gj.

Let U be a continuous irreducible representation in the class o
of the dual object of a compact group. Functions

UEZ)(I') = <U£U)§17§]>7 27] € {1, e 7da}

are called coordinate functions for U, where &;,... &, is an or-
thonormal basis in the representation space of U(?). Coordinate func-
tions play an important role in the description of the structure of

L*(G)={f:G—=C: ||fII?:= [, IfIPdu < oo}, ie:

Theorem 1.2.3 (Weyl-Peter). Let G be a compact group. Then for

all o € ¥ and 5,k € {1,2,...,d,} the set of functions \/_qu is an
orthonormal basis for LZ(G). Thus for f € L*(Q), we have

de
(1.1) F=3"5" dofli g o)y
oceX j,k=1

where
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and the series in (1.1) converges in the metric of L*(G). Furthermore,
zf{aggk) ke {l,2,...,d,;0 € X} is any set of complex numbers such

that .
Z Z da|a§frk)|2 < 00,

c€eX j,k=1

there is a unique function g in L*(G) such that f(i,j, o) = afk) for all
gk €{1,2,...,d,}; o € X} and for which accordingly

g_z Z d ajol.c)ug(;f

€Y j,k=1

The finite linear combination of arbitrary coordinate functions are
called representative functions. Using the ||fl, := sup{|f(x)| : = €
G} uniform norm, we have:

Proposition 1.2.4. Let G be a compact group. Then the set of all
representative functions is dense in the set of all continuous function
on G with respect to the uniform norm.

Finally, by Propositions 1.2.2 and b notice that all coordinate func-
tions of the complete direct product of finite groups Gy (k € N) are
the finite product of coordinate functions of distinct groups Gj. An
interesting ordering of coordinate functions is given in the following
section.

1.3 Representative product systems

Let m := (my, k € N) be a sequence of positive integers such that
my > 2 and Gy, a finite group with order my, (k € N). Suppose that
each group has discrete topology and normalized Haar measure piy.
Let G be the compact group formed by the complete direct product
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of GG}, with the product of the topologies, operations and measures
(1). Thus each x € G consist of sequences = := (xg,z1,...), where
z € Gy, (k € N). We call this sequence the expansion of z. The
compact totally disconnected group G is called a bounded group if the
sequence m is bounded.

Define G° as the set of sequences of G terminating in e’s (i.e. the
set of “finite” sequences), Ip(x) := G,

IL(x) ={ye G :y,=ax, for 0<k<n} (reGneN)

I, :== I,,(e). We say that every set I,,(x) is an interval. The intervals
I,, are a countable neighborhood base at the identity of the product
topology on G.

If My := 1 and My, := mpMy, k € N, then every n € N can
be uniquely expressed as n = > o My, 0 < ny < mg, n € N.
This allows us to say that the sequence (ng,ni,...) is the expansion
of n with respect to m. In this case let n* = (ng,n1,...) € G. We
often use the following notations: let |n| := max{k € N : n; # 0} and
Ny ‘= Z;:é nkMk, n(k) = Z;ik nkMk.

Now we denote by X the dual object of G. Let {¢f : 0 < s < my}
be the set of all normalized coordinate functions of the group G} and
suppose that ¢ = 1. Thus for every 0 < s < my, there exists a o € X,
i,j €{l,...,d,} such that

eh(1) = Vidoul (1) (x € Gy).
Let 1) be the product system of ¢}, namely

Ual@) == [[ it (@) (z€q),

where n is of the form n =Y 7 jn, My and z = (zg, x1,...). Thus we
say that v is the representative product system of . The Weyl-Peter’s
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Theorem 1.2.3 secure that the system ) is orthonormal and complete
in L*(G,,).

The functions 1, (n € N) are not necessary uniformly bounded,
so define

Uy = 7{2% ||¢n||1||¢n”oo (k€ N).

W, is the multiplication of the greatest product of the square root
of the dimension and the L'-norm of the functions ¢ appeared in all
group G for 0 < j < k. It seems that the boundedness of the sequence
U plays an important role in the norm convergence of Fourier series.

1.4 Examples

1.4.1 The Walsh system

Let my = 2 for all £ € N and Z, be the cyclic group of order 2. Thus
G = Zg. The characters of Zo are the Rademacher functions:

or(x) = (=1)* (s € {0,1}, = € Zy).

The product system of ¢ is called the Walsh system. It is easy to see
that in this case ¥, = 1.

1.4.2 Vilenkin systems

Let the sequence m be an arbitrary sequence of integers greater than
1 and Z,, be the cyclic group of order n, where n is an integer greater
than 1. Let Gy = Z,,, for all £ € N. The characters of Z,,, are the
generalized Rademacher functions:

() = exp(2misx /my) (s€{0,...mp — 1}, 2 € Zp,, 1* = —1).

The product system of ¢ is called a Vilenkin system. We also obtain
that ¥, = 1.
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1.4.3 The complete product of 3

Let my = 6 for all £ € N and 83 be the symmetric group on 3 elements.
Let G, = 85 for all £k € N. 85 has two characters and a 2-dimensional
representation (6 = 12 + 12 4 2%). Using a calculation of the matrices
corresponding to the 2-dimensional representation we construct the
functions ¢j. In the notation the index £ is omitted because all of the
groups G are the same.

e (12) (13) (23) (123) (132) || [[¢"llh | ll¢*lloo
|1 1 1 1 1 1 1 1
ol | 1 -1 -1 -1 1 1 1 1
41 0 0 _V6 6 V6 V6 V6 V6
5
g 00 = =y Y 3 7
©?,... 0" correspond to the 2-dimensional representation. Notice

that the functions ¢} can take the value 0, and the product system
of ¢ is not uniformly bounded. This facts encumber the study of this
systems. On the other hand, max{[|¢®|[1][¢*[l : 0 < s < 6} = 3,

thus‘I/k:(%)kﬁooifkﬁoo

1.4.4 The complete product of Q,

Let m;,, = 8 for all £k € N and Q, be the the quaternion group of order
8, i.e.
Qy = {[a,b] : a* = e, b* = a?, bab~' = a’}.

Let G, = Q, for all K € N. Q, has four characters and a 2-dimensional
representation (8 = 124+12+1241%+22). Using a calculation of the ma-
trices corresponding to the 2-dimensional representation we construct
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the functions j. In the notation the index k is omitted because all of
the groups G), are the same.

€ a a? a’ b ab a?v  a®b || €%l | 1le® oo
W[ 1 1 1 1 1 1 1 1 1 1
! 1 1 1 1 -1 —1 -1 -1 1 1
21 -1 1 ~1 1 -1 1 -1 1 1
Bl 1 -1 1 -1 -1 1 1 1 1 1
<p4 V2 2 V2 =V 0 0 0 0 g V2
V2 V2 V2 V20 0 0 0 Y2 V2
N 0 0 V2 v V2 Va | ¥ V2
el o0 0 0 V2 V2 V2 V| 2 V2
... " correspond to the 2-dimensional representation. Notice

that values of |p®| are 0 or the square of the corresponding dimension
only. Hence, the absolute value of the coordinate functions are 0 or
1 respectively. A representation of this form is called a monomial
representation. If all of the representations are monomial, then ¥, = 1
for £ € N, but the group G is not necessarily abelian.

1.5 Relation with the interval [0,1]

From 1.1.1 we have that the topology of G is metrizable. Moreover,
the metric we concerned is induced by a norm as follows. Order the
elements of all groups Gy, (k € N) in some way such that the first
is always their identity. In fact, the ordering is a bijection between
Gy and {0,1,...,my — 1} which gives to every z € G} the integer
0 <Z < my (e =0). Define

— Tk
x| = (x € G).
| ;0 M4
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It is easy to see that |.| is a norm and the proceeded metric d(z,y) :=

|zy~!| induces the topology of G. In addition, 0 < |z| < 1 for all

x € G. Using this fact we represent the group G in the interval [0, 1].
Any x € [0,1] can be written

%
My 1

T = (0 <7 <my—1),

[0, @ R —

k=0

but there are numbers with two expressions of this form. They are all
numbers in the set

Q= {L:O§p<l\/[n, n,pEN}
Mn

called m-adic rational numbers (Note that 1 is not an m-adic rational
number). The other numbers have only one expression. The m-adic
rational numbers have an expression terminates in 0’s and other termi-
nates in my — 1’s. We choose the first one to make an unique relation
for all numbers in the interval [0, 1] with their expression, named the
m-adic expansion of the number. In this manner we assign to a num-
ber in the interval [0, 1] having an m-adic expansion (Tg,Z7,...) an
element of G with expansion (xg, z1,...). We denote this relation by
p. pis called Fine’s map. Fine’s map is an injective map satisfying:

pr+) = p(a—) = p(z) (€ (0,)\Q)
plz+) = p(x), pla=)=p*(z) (v€Q)
p(0+) = p(0) = (e;e,...),  p(1—) =p(1)

where p*(x) signifies the element of G terminates in my — 1’s with
norm x. p(x+) and p(z—) signify respectively the right and left limit
of p at = under the usual metric.
Using Fine’s map we introduce a new operation in the interval
0, 1[:
vy = lp@pw)  (wyeo1].
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We shall remark that the interval [0, 1] is not a group under the new
operation since it is not associative, but commutative and has identity.
An m-adic interval always mean an interval of the form

p p+1

I(n;p) = {ﬁ, Vi

l (0<p< M,, n,peN).

We name the m-adic topology the one induced by the m-adic intervals
on [0,1[. This topology is totally disconnected because the m-adic
intervals are both open and closed and form a countable basis. The
m-~adic topology is issued by the metric:

d(z,y) == |p(x)p(y)"!|  (z,y €[0,1]).

Fine’s map give a natural relation between the new structure of
[0, 1] and the structure of G. p is a continuous map under the m-adic
topology since for any z € G and n € N we have p~*(I,,(x)) = I(n, p),

n—1 __

where p .= M, Z i, but this property is not true for the norm
= My

|.|. In addition

(1.2) ()] == (z € [0,1]),

(1.3) p(lz]) =z ae. (x € G).

(1.3) is not true only for the elements of G with expansion terminates
in my — 1’s. From similar reason Fine’s map is not a homomorphism
but the

(1.4) p(z ©y) = p(lp(x)p)]) = p(x)p(y)

equality is true for all of elements x,y € [0, 1] such that  ® y is not a
m-adic rational.

Let L°(G) denote the set of all measurable functions on G which
are a.e. finite. In some way denote by L° the set of all Lebesgue
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measurable functions on [0, 1] which are a.e. finite. According to the
Paley lemma (see (2.1.2)) the set of all representative functions on G
coincide with the set of all finite linear combinations of characteris-
tics function of intervals, so a function in L°(G) is a.e. the limit of
representative functions.

The following theorem show the relation between the Haar inte-
gration on G and the Lebesgue integration on the interval [0, 1].

Theorem 1.5.1. Let p denote the Fine’s map.

(a) If f € L°(G) then fop e L°. Conversely, if g € L° and
(1.5) fx) =g(z)  (z€q)
then f € L°(Q).

(b) If f is integrable on G then f o p is Lebesque integrable and

/Gfdu = /Ol(f o p)(z)de.

Conversely, if g is Lebesque integrable and f is defined by (1.5)
then f is integrable on G and

/Olg(x)dx:/(;fdu.

Proof. We can prove our statements for characteristics functions of
intervals using (1.2) and (1.3). Indeed, if z € G, n € N and f is the

characteristics function of the interval I,(z) then g is the character-
n—1 __

x
istics function of the interval I(n,p), where p := M, g Mk :
k41
k=0

conversion of the above statement is valid a.e. Then, we obtain our
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statements for finite linear combinations of characteristics functions
of intervals, and finally for the corresponding set of functions using
the Lebesgue convergence theorem. This completes the proof of the
theorem. O

The m-adic topology differs considerably from the usual topology
on the interval [0, 1], but the Lebesgue measure () is also translation
invariant under the new operation. To show this statement we intro-
duce the following notation. Let f be a complex function defined in
the interval [0, 1] and denote by 7 the left translation operator under
the new operation, so

(1.6) (rf)(z) = flyor)  (z,y€l0,1]),
and denote the left translation of the set E by
1) (B ={yorize B} (EC1] yeo1).

Theorem 1.5.2. Let f be a complex function defined on the interval
0, 1], then

(a) If the function f is Lebesgue integrable then 1,f is also Lebesgue
integrable and

/0 (ryf) () dz = / f@yde  (yeo1].

(b) In particular for all E C [0,1] Lebesgue measurable set
Ary(E)) =ME)  (y<[0,1]).

Proof. From (1.2), (1.3) and (1.4), using the translation invariant
property of the measure p we have

/ol(Tymx)dx:/Olf(y®$)dx=/0f(y®|x|)dﬂz
= [ sotwein= [ stehyin= [ sya
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This completes the proof of the theorem.

Finally, we represent the system ¢ on the interval [0, 1] substituting
it by the

Un ::Q/Jnop

system, according to Theorem 1.5.1. In all cases we use the order of

(n € N)

the system ¢ given in the examples of the Section 1.4.

The Walsh system takes the values 1 and —1 only.

The Walsh System n=0

0.8

0.6

044

0.2

0.2

0.4

0.8

The Walsh System n=1

054

-0.51

14

02

0.4

08

The Walsh System n=2

0.5

—0.54

0.2

0.4

0.8

The Walsh System n=3

05

—0.54

02

04

08
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The Walsh System n=4 The Walsh System n=5
05 05
0 02 04 0| 038 o 02 04 05| 08
05 05
1 I— I— L L | 1] L
The Walsh System n=6 The Walsh System n=7
05 05
0 02 04 06| 038 1 o 02 04 05| 08
05 05
a1 1] L
The Walsh System n=8
1 oo s
05
o 2 04 06| o.
-05
' N N N
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However, the Vilenkin system takes the values of the complex unit
roots.

The Vilenkin System (m=3)  n=0 The Vilenkin System (m=3)  n=1

The Vilenkin System (m=3)  n=2 TheVilenkin System (m=3)  n=3

The Vilenkin System (m=3)  n=4 TheVilenkin System (m=3)  n=5
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The Vilenkin System (m=3)

n=6

The Vilenkin System (m=3)

n=7

The Vilenkin System (m=3)

n=8

The Vilenkin System (m=3)

n=9
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The system on the complete product of 83 takes only real values.

The complete product of S3  n=0 The complete product of S3  n=1
0.8
05
0.6
0 02 04 06 08 1
044
-0.5-
02]
o 02 04 06 08 1 -
The complete product of S3  n=2 The complete product of S3  n=3
1]
1
054
0.5
o 02 04 06 038
057 o 02 04 06 08
1]
—0.5-
The complete product of S3  n=4 The complete product of S3  n=5
1 14
0.5 054
o 02 04 06 08 o 02 04 06 08 1
059 051
1] 1]
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The complete product of S3  n=6

0.5

The complete product of S3  n=8

L

2 04 0. 8 1 12 0.4 0. 0.8
059
-05
1]
) [ N N S N B S N LU
The complete product of S3  n=10 The complete product of S3  n=12
1
1]
. " H H H H H H
0 02 04 0. o8 0 q2| 4 X o8
205 054
1]
-1
The complete product of S3  n=14 The complete product of S3  n=23
159
1]
1
| Inlgla | -
0 q2) 4 [ 8 1 0 02 4 06 038
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Finally, we can observe the system on the complete product of Q,
takes the values of the complex 4-th unit roots and zero.

The complete product of Q2 n=0 The complete product of Q2 n=1

The complete product of Q2 n=2 The complete product of Q2 n=3

The complete product of Q2 n=4 The complete product of Q2 n=5
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The complete product of Q2 n=6

The complete product of Q2 n=7
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Chapter 2

LP-norm convergence of
Fourier series and Fejér means

In Section 2.1 we introduce essential concepts in the study of Fourier
analysis as the concept of L? spaces, Fourier coefficients, Fourier series
and Dirichlet kernels. The Dirichlet kernels play a prominent role in
the convergence of Fourier series. The lemmas proved in this section
will be used in this regard and they appeared first in [10] (see also
[33]). Paley lemma is used to prove that the partial sum of Fourier
series of every integrable function f defined on GG have a subsequence
converging to f in LP-norm (p > 1) and a.e. This statement show us
a notable difference with respect to the classic Fourier analysis.
Paley in [19] proved that the nth partial sum operators are bounded,
uniformly in n, from LP(G) into itself for 1 < p < co. It is equiva-
lent to convergence of this operators in LP(G) norm for 1 < p < oo.
This statement is known as the Paley’s theorem. Paley’s theorem was
shown independently for arbitrary Vilenkin systems by Young [39],
Schipp [21] and Simon [26]. We cannot generalize this statement for
every non-abelian group. In Section 2.2 we show this negative re-
sult for a bounded group G with unbounded ¥ sequence. This result

29
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appears in [10] for the complete product of 8.

In Section 2.2 we also study the case p = 1. For an arbitrary
group G there is a function f € L', such that the sequence of partial
sums S, f of Fourier series of f does not converge to the function f
in L'-norm. It is a well known result for Vilenkin groups (see [25],
[26], |21] and [39]). However, a certain assumption for the modulus
of continuity implies the L'-norm convergence of Fourier series. This
results appeared in [34] are the generalization of Simon’s results in
[27] for not necessarily commutative groups. The concept of modulus
of continuity is due to Fine [3] and Morgenthaler [15] for the Walsh
group.

Finally in Section 2.3 we prove the convergence in LP-norm of the
Fejér means of Fourier series when p > 1 in the bounded case. The
method of the proof is similar to [6]. For the Fejér kernels in the case
of Abelian groups see also [1].

2.1 Fourier series and Dirichlet kernels

For 0 < p < oo let LP(G) represent the set of all functions L°(G) such

that A
= Pd ’
T ( L u)

is finite. Similarly L>°(G) represent the set of all functions L°(G) such
that
| fllo :=inf{y € R: |f(z)| <y for ae. z € G}

is finite. Since the measure p is finite the relation
L¥(G)Cc LYG) Cc I’(G) c LYG) (1<p<q<o0)

is valid. For this reason considering the fact that || f||, is only a norm
for p > 1, the most extensive set of functions on GG we consider is just

LYG).
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For f € L'(G) we define the Fourier coefficients by

. /G fhudp (ke N),

and the n-th partial sums of Fourier series by

Suf :zm (n € P).

Du(,y) =Y ti(2)dly)  (neP).
It is easy to see that

(2.1) /f (@, y)du(y).

(2.1) mutates the importance of the Dirichlet kernels in the study
of the convergence of Fourier series. The lemmas proved below are
used in this regard. First we introduce the following notation. Every
n € N can be uniquely expressed as n = Y, My, 0 < ny < my,
nr € N. This allows us to say that the sequence (ng,nq,...) is the
expansion of n with respect to the sequence m. In this case let n* =
(ng,n1,...) € G. We often also use the following notations: let |n| :=
max{k e N: Nk 7é 0} and n(k) = Zg -0 nkMk, (k) — Z;ik nkMk

Lemma 2.1.1. Ifn € N and z,y € G, then

ne—1

z,y) =Y D (x,y) (Z @Z(%)@Z(%)) Dyt (2)W 000 (1),

where (ng,nq,...) is the expansion of n and r = (xg,1,...), Yy =
(Yo, Y1, --)-
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Proof. For each n € N, x,y € GG, we have

+ o (@) Byt Winl) Dy (2, 9).-

By induction and applying that ¢* = 1 for k¥ > |n| we prove the
lemma. O

Lemma 2.1.2. (Paley lemma) If n € N and x,y € G, then

M, forz e I,(y),

DMn(l'7y) = {O fm“ T € In(y>

Proof. For every positive integer n and x,y € G we have

n—1mg—1

D, (z,y) =[] D eilen)@i(w),  Duy =1.

k=0 s=0

Then it is sufficient to prove that

mk—l
_ my, for zp =y
2.2 (z)0, =

(2.2) ; i (z0)Ph () {0’ for o £ 3

for each k € N. In other words, it is sufficient to demonstrate that for
every finite and compact group G of order m:

d
- o)/ \—(o m, forx=y
Z Z dUUz(j)<x)u§j)(y) = { (x,y € G).

oeSij=1 0, forz#y
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Using the
a7 () = u? (7Y,
do
ul?(@y) = > ul (@)ul? (y)
r=1

equalities for x,y € G, i,j € {1,...,d,}, 0 € X, which are well known
in representations theory (27.5 in [14]), we can state

do do
SN il @E) () =3 de > ul (@)l ()

oeX i,j=1 oceX 4,j=1

do
=3 ", S dou (wy ) = doxolay ),

oeX =1 oeX

where Y, is called the character of the representation U(?). Since the
above sum is the identity element of convolution (Theorem 27.41 in
[14]), we have

for 1 —
Zdaxmy—l):{m’ )
= 0, forx#y

This completes the proof of the lemma. Il

The Paley lemma is used to prove that the Sy, f partial sequence
of Fourier sums converge to f in LP-norm and a.e., if f € LP(G), p > 1.
Indeed, the

Su f(x) = /G F(9)Dag, (2, 9)du(y) = Fdu

o
p( L (7)) In(x)
operator is the conditional expectation with respect to the g-algebra
generated by the sets I,,(z), = € G. Thus, the following statement is
a consequence of the martingale convergence theorem (see [17]).
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Corollary 2.1.3. For each f € LP(G), p > 1, Sy, f converges to f
m LP-norm, and a.e.

The Weyl-Peter’s theorem and the Theorem (27.43) in [14] secure
that the system 1 is orthonormal and complete on L?(G). The de-
finition of the system 1 secure all of function of ¥ and their finite
complex linear combinations that is all of representative functions are
finite linear combinations of characteristics functions of intervals. Con-
versely, from the Paley lemma we have the characteristics function of
an interval and the finite complex linear combinations of them all are
representative functions. Since the set of all finite linear combinations
of characteristics functions of intervals is dense in L' (), we can state:

Corollary 2.1.4. The system 1 is orthonormal, and complete in
LYG).

2.2 LP-norm convergence of Fourier series

According to the theorem of Banach-Steinhauss, S,f — f as n — oo
in L? norm for f € LP(G) if and only if there exists a C},, > 0 such that
1Snflly < Cullfllps f € LP(G). Thus, we say that the S, operators
are of type (p,p). Since system v forms an orthonormal base in the
Hilbert space L?(G), it is obvious that S, is of type (2,2).

For Vilenkin systems the operator S, is of type (p,p) (1 < p < ).
In general this statement is not true. In the following theorem we
suppose, if a finite group appear in the product of GG it has the same
system ¢ in the all of it’s occurrences.

Theorem 2.2.1. If G is a bounded group with unbounded sequence
W, then there is a 1 < p < 2 for which the operator S, is not of type

(p,p)-



2.2 LY-NORM CONVERGENCE OF FOURIER SERIES 35

Proof. To prove this theorem we first observe that according to the
Holder’s inequality for all normalized coordinate functions ¢} defined
on the groups Gy we have

leililierllo = lgrllz =1 (0<s <my).

We distinguish two kind of groups G} according as
max [[op[[1fl@ille > 1 or  max|lgifh]l@ille = 1.
s<mp s<myg

If for a k € N, the group G, satisfies the first condition, we choose
ir, < my, for which the normalized coordinate function ¢} of the group
G, satisfies

e 11105 oo = max |93 167 lloo-
s<mpy

In addition, denote by ay an element of Gy, for which @i (az,) = [|©|co,
and fi € Ll(Gk) by

1, forxz =ay
= € Gy).
fil(@) {O, for x # ay, (@ ¢)

The second case is more simple. Let i, =0 (gpﬁj =1) and also fr, =1
if for a k € N the group G}, satisfies the second condition.
Thus for the two cases we have:

(2:3) ’/G it i it = Nl it ool filln
k

and

(2.4) \ | st dun Ik < U
Gg
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Since the ||f]|, is a continuous function with respect to p for each
f € LP(Gy), the function

/ Te@)F dpu, il (1<p<2)
G | fellp

is continuous with respect to p, and for the first case by (2.3) and (2.4)
we obtain ®4(1) = [l |l1]leF |l > 1 and ®x(2) < 1. The continuity
of &, assure that there is a 1 < p, < 2 so that

D (p) ==

it llp = /e I llei ool fell

(2.5) ‘ / Fo7 dun,
G

for all 1 < p < pi.. In the second case the value of py is 2.

The boundedness of the group G implies there are only finite dif-
ferent values of py (k € IN), hence for p := %lgrl{pk} > 1 the statement
(2.5) is valid.

j—1

If j is an arbitrary positive integer and n = Z 1M}, then define

k=0

F; € L*(G) by

Fi(x) =[] felzn) (&= (z0,21,...) € G).

j—1
Since || Fyll, = [ ] Il/xll, it follows that

k=0

1S 4+1E5 = SnFjllp =

/ Fﬁndn\ enll, =
G

j—1
11|/ ftdu
k=0 1753

(2.6)
lerlle = vV ¥kl Fllp,
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but if S, is of type (p,p) then there is C,, > 0 so that
[Sn4+1F) = SuFjllp < [1SntaFjllp + (1S Fjllp < 2Cp |1 Fl,

for each j > 0, which contradict (2.6) because the sequence W is not
bounded. For this reason operators S, are not uniformly of type (p, p).
This completes the proof of the theorem. n

We restrict our attention to the case p = 1.

Theorem 2.2.2. For an arbitrary group G there exists a function
f € LYQ) such that the sequence of partial sums S, f of the Fourier
series of f does not converge to the function f in L'-norm.

Proof. 1t will be sufficient to show that the operators S,, are not uni-
formly bounded in L'-norm for all n € N. Let f,(x) = Dy, (z,e),
where e is the identity element of G. Thus || f,||s = 1 for all n € N.
We distinguish two cases according as the sequence V¥ is bounded or
not.

If the sequence V¥ is bounded there exists a C' > 0 such that

(2.7) Il <€ (reN, 0<s<m,).

We construct the sequence ¢; (j € N) as follows: set ¢o = 0 and let g;
be the least number greater than ¢;_; such that

j—1 sji—1
(2.8) ey M, [] &< M, (GEN),
=0 r=¢g+1

where d} is the greatest dimension of a representation of the group G,
(r € N). We can found always this kind of number j because d is a
divisor of my, thus the quotient

m e
H —:—>oo, if [ is fix and s — oo.
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The sequence < is used to define the number k. Take the coordinates
of the expansion of & in the following manner. Let &k, (j € N, ¢; < n)

be the least natural number greater than 0 such that gpls;j (e) # 0 and
let the others coordinates be 0. Then

! {0 if k=0

(2.9) > ei@)Ei(e) = i £0 (1 € Gu).

Note that the coordinates of the expansion of k is not 0 if the index
of the coordinates is in the range of the sequence ¢ and less than n.
Since k < M,, by Lemmas 2.1.1 and 2.1.2 we obtain

IWMF/WMMM
G

o o0 k-1
=) i > Dy (x,e) (Z 907(:131)@7(@)> Ypsn (2) s (€)| d
=0 iMG+1 | =0 —0

3 <.

dz.

—1 J k-1
/ Z M, (Z ¢?($Z)¢?(€)> Vr11) (x)@k(l_ﬂ) (e)
j=0 IiNj+1 =0

=0

In addition, we denote by p the greatest natural number for which
Sp < n is true. Thus by 2.9 and by the definition of the number k we
have

D Mty (2)yqn (e)

P
sl = | da
=0 1\ e;+1 | =p
p 7j—1 ijl . .
=Z/ My + 3" M, T 165 () Pet ()7 (e)
=0 /Lo \sj 1 1=0 r=q+1

X |wk(<j+l> (‘,E)HE]C(%'-H) (6)| dr =
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p j—1 51
k¢ _ ke,
:Z/ My + 3 M, TT 65 @Rt (270 (¢)| da
=0 7/ 1s;\lsj+1 =0 r=q+1

XLMWWW%W@Wﬂ

The condition for k& implies that | (e)| = ||¢F || (r € N), thus the
last integral can be written as

/ [Yyccr+0 (@) [y ()] o = 19500 oo |y on [l = 1.
G

On the other hand,

P j—1 g1
ke ke

Z/ M+ 3" M, T 16 )Pt (oot (e)]| da
j=0 /15 \s;+1 1=0 r=q+1

p
Zz(/ M, da

7=0 ch\1<]-+l

gi—1 ke
—/ ZMQ IT 1k (e oo (x,)Ps; (e) d:v)
Igj\[§]+1 =0 r=¢-+1

Combining this estimate with the earlier one, by 2.7 and 2.8 we con-
clude that

p
1 1
Skfalll > (M.(—— )
| Sk fllx ; s\~ Moo
j—1 Gj—1
_/1 u Z < H d*lsocj (%)H% (e )Ida:>

511 1=0 r=q+1
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ci—1

= r=¢+1
P pil,
> (——M S, T e I Hoo>
. S5
=0 7 1=0 r*cl-&-l
P Pl
Sk £ i
=0 J r=g+1
1 "
4

0

<.
Il

If the sequence W is not bounded the definition of & is more simple.
Take the coordinates of the expansion of k£ in the following manner.
Let k; (j € N, j < n) be the least natural number greater than 0 such

that gpfj(e) # 0 and let k; (j € N, j > n) be 0. Then

(2.10) Y gi@)Bi(e) = {1 Thsn " ea

0 ifl>n

Since k < M,, by Lemmas 2.1.1 and 2.1.2 we obtain

HSkan1=/ |Dy(x, €)| dx
G

_ k-1
= Z/ ZMI (Z @ (21)7; (e >¢k(l+1)(x)wk(l+l>(e) dx
I\Liv1 | =g
Z/ My |y () ()] de ="
Io\I
1 v, .
> 50 ifn — oo.

2 [woll1lleolloo

This completes the proof of the theorem. O

P (m, —1 - *
> Z( ;Jng. / el Z S H d ‘Socj (iﬁcj)H(ng (e)] dx,
J e 0

)
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Let f € LP(G), 1 < p < oo and [ an interval. Then I = I,,(z) for
some x € G,n € N. Denote by
(2.11)

®) _ L _ z D
wp(f7l) ‘= sup (,u(]>/[|7—hf f|pd:u> ) w(faj) '_wl(.ﬂl)

hely,

the local modulus of continuity of f on I and
(212) WP (f) = swpmf = flps (mEN), wu(f) = w V()
e n

the n-th modulus of continuity of f on LP, where 7,f(x) = f(zh)
is the right translation operator. We remark that if we use the left
translation operator, we obtain identical value for the modulus of con-
tinuity, because the measure is both left and right translation invariant
and I, is a normal subgroup of G. Notice that wy(bp)(f) N\ 0, n —
and w? (f) increases when p is also increases.

We often use the following lemma in the proof of the theorems.

Lemma 2.2.3. Let X be the dual object of a finite compact group
G and {¢r : 0 < k < |G|} be the set of all normalized coordinate
functions of the group G. Then for every z,y € G and 0 < j < |G|
we have

J

> en(@)pr(y)

k=0

<|al.

Proof. For o € X'let A, be the collection of all numbers & in {0, 1,...5}
such that ;. is a normalized coordinate function corresponding to the
chosen representation of o. Using the inequality of Cauchy-Buniakovs-
kii and the unitary property of the matrices appeared in the represen-
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tations, we have

<y

oeX

> eil@)Pr(y)

k€eAs

<> (Z sok(fﬂ)z)é (Z |90k(?/)|2>

oeX \k€A, keAs

<3 (d2)* (a2)

ceX

=Y d2 =G|

oeXy

> en(@)En(y)

D=

This completes the proof of the lemma. n

We prove that a certain assumption for the modulus of continuity
implies the L! convergence of Fourier series. The following theorem
was proved by Simon in [27] and we follow the method of his paper.

Theorem 2.2.4. Let f be a function in L'(G) for which the following
condition holds:

(2.13) we(f) = o(Tr Y _my)~".
Then the sequence of partial sums S, f of Fourier series of f converges

in L'-norm to f.

Proof. Let us write

s—1
n:st—l—Zli (1<j<my)
1=0
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for n € N. Then

) = 2 frtbe () Z Feton(x
k=0 k=jMs
=S+ [ 10) 3 Tl

— S / F)e (@) () Zwy)wk(x)dy

- ]Mf /f 903 xs ys (x,y)dy,

where n* =n — jM,. From this follows that
(2.14)

1808 = £l < ISy =+ [ \ | 160D ()|
G G

By the fact

(2.15) /D xydy— /wk Ydy = o(z) =

and Lemma 2.1.1 we have

|Sjne. f — flli =

y)Diag, (. y)dy — / §(2) Dy, (2, y)dy| e

/ / £ 9)— F@) I Dsa, (2, 9)ldy d

<[ [ @D ) ngm@(gs)

dy dx.
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By Paley lemma and Lemma 2.2.3 we have
IS0 =l < [ [ 150) — @)y
G JIs(x

:msMs/ f(at) — f(a)|dt da.
G JIg

Thus applying the Fubini’s theorem we obtain

(216) 1. f — flls < moM, / /G F(at) — f(@)|dtdr < maws(f).

In order to estimate the second term in (2.14) let h(p) be the element
of G with expansion h(p) = (e,e,..., e ,p, € ,...). Then h(p) € I,.
01

s—1 3 s+

If p7= is a normalized coordinate function of the group G, then there

exists a 0 € Xy, and 7,5 € {1,...,d,} such that

o = Vdgu?).

Using the fact that the measure p is both right and left translation
invariant, n* < M, and D,«(x,y) does not depend on the s-th coor-
dinate of y, we have

/ F(yh(0)) 2 (ys) Do (2, y)dy = / S (sp) Do (1) dy
6 ™
- /G F ()20 (5sp™) Do (2, )y

de
— /G FIVae S 48 (02)6) () D (1)

do
=Y W7 p) /G F) Vo) (y5) Do (2, ) dy.
r=1



2.2 LY-NORM CONVERGENCE OF FOURIER SERIES 45

The coordinate functions form an orthonormal system:
S ) = me [ @) dua(a) 0.
PEGs Gs

For this reason

> / F(yh(p) @2 (ys) Da- () dy = 0.

pEGs

Denote by (., .) the inner product (for the complex numbers a+bz, c+de
(a+ bi,c+ di) = ac+ bd). Thus

/f 1(ys) n*xyderZ/fyh (ys) D (%, y)dy = 0,

peGs
/ f(y Dy (2,y dy

p#e

+ </f )02 (Ys) Dy (2, y)dy,

pEGs
pFe

/f yh(p))@h(ys) Dy (x, y)dy> 0.

Then there exists a p € Gy, p # e such that

/f yh(p))es(ys) Dn-(z, y)dy — /f y) el ys)Dn*(:v,y)dy‘

> | [ 1D e y>dy\

Thus

Dy (z, y)dy’

< / FWh(®)) — F@)I12 ()| Do (. )y,
G
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and for the second term in (2.14) we obtain

dx

[ / F ) (22) P s) Do (2, )y

< [[lettal [ 15n0) - S0l 00 Da o)

Applying Fubini’s theorem and by Lemmas 2.1.1, 2.1.2 and 2.2.3 we
have

dx

/ F )& (22) 2 ys) Do (21, )y

/ FWh() — 7)o (6] / 63 ()| Do (2 )|y
<Z / Fh() — F0) [T @)

ne—1
< [ Do) | X i) [non (@)ldady
5=0
-1
<> [ 160D = S B bl
k=0

Consequently,

(2.17)

/ f 905 zs ys)Dn*(xvy)dy

dr < Vw(f) SZ:mk.

By (2.14), (2.16) and (2.17) we obtain

S

||Snf - f”l < \Ijsws(f) ka

k=0
Theorem 2.2.4 is proved. O
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In the case when the sequence m is bounded it is easy to see that
there exists a ¢ > 0 such that m; < clogmy for all £ € N. Then we
obtain from Theorem 2.2.4:

Corollary 2.2.5. Let f be a function in L*(G) for which the following
condition holds:

(2.18) wi(f) = o(Ty log M) .

If the group G is a bounded group then the sequence of partial sums
Snf of Fourier series of f converges in L'-norm to f.

The above corollary is similar to the known Dini-Lipschitz test for
uniform convergence of Vilenkin series [18]. In a similar manner to the
proof of the Theorem 2.2.4 we have carried out similar calculations and
got the following result:

Theorem 2.2.6. Let f be a continuous function on G for which the
following condition holds:

k
(2.19) W (f) = o(Wy Z my) .

Then the sequence of partial sums S, f of Fourier series of f converges
. uniform norm to f.

The above results are simpler if the sequence ¥ is bounded. In this
case Uy, vanishes in (2.13), (2.18) and (2.19). Moreover, we have

Theorem 2.2.7. Let f be a continuous function on G for which the
following condition holds:

(2.20) > P (f) < oo,
k=0

and suppose the sequence ¥ is bounded. Then the sequence of partial
sums S, f of Fourier series of f converges in uniform norm to f.
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Proof. From Lemma 2.1.1 there follows for all £y € N that

1S f () = f(2)] =

[ () = 1D y)dy\

k=0

nE—1
(Z (k)P (Yn )%ﬂkﬂ)( )¢n(k+1)(y)d3/

s / () — F(@)| Doy (2, 9)

k=ko+1

nkl

Z (k) Pr (Yr)

/ (f(4) — (2))Das, (2, 9)
G

| ()] [ 0000 () |dy.

If kg is fixed the first term is the sum of kg 4+ 1 Fourier coefficients, so
it converge to 0 when n — oo (f is a continuous function). We can
estimate the second sum from above for all € > 0 by

o0

>l @ | 1) = )| Da o) i ()l <
k=ko+1
< it (@) 19 (F) < ¢ D miet(f) <e
k=ko+1 k=ko+1

if ko is a sufficiently great number. This completes the proof of the
theorem. n
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2.3 LP-norm convergence of Fejér means

Denote the Fejér means of Fourier series by

n—1
1
onf ==Y Sif  (neP),
e
and the Fejér kernels by
1 n—1
K, = — Dy, (n € P).
n
k=1

Then we have

ouf(z) = / f@)Ea(z,)duly) (€ G.neP).

Lemma 2.3.1. If G is a bounded group, then there is a C' > 0 such
that

sup /G Ko, )| dpa(y) < C

zeG

Proof. Throughout this proof C' > 0 will denote an absolute constant
which will not necessarily be the same at different occurrences. Let
r be a fixed natural number. To estimate the kernels |K,,| we prove
that for every r € P

V2

V2 -1

(2.21) > Mjd, < M, d,,
j=0

where d,, = Hd;nk) and d,i"k) is the dimension of the representation

k=0
corresponding to ¢,*. Set

bj = den(j) (O S S S T),
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thus .
bjt1:= Mj1d, G+ = denmd(—nz_) > \/§bj

2
for 0 < s < r, since (djnj)> < m;. Then

bj > by + \/§ij — \/§br-
j=0

J=0
Consequently
g 2
Z b; < Lbr.
= V2 -1

This proves the inequality (2.21).
First we will estimate the absolute value of

n(&) 4+ M,—1

Kyon, = Y, Da (s€N)

a=n(s)
kernels if x € G,y € I,(x) \ I,4+1(z) and applay the

|n‘ ns—1

(2.22) nKy =Y > Kyivm (nEP)

s=0 j=0

identity. Let s <r. Then by Lemma 2.1.1

Kn(3)7MS (x7 y) =
n+M,—1 7 ap—1 . .
= > > M (Z sﬁi(xk)ﬁ(yk)) Patern) (2)haeern (),
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where z € G, y € I.(x) \ I,11(x). Since G is a bounded group, by
(2.21) we have

|Kn<3>,Ms (:E, y)| < CMM,d, ).

Then

[ R oldnt) < O
@\ Ir+1(z)

Next we turn our attention to the s > r case. In this case it is
necessary to set a better estimate of |K, (7, y)].

Kn(s),Ms (l',y)
n()+M—1 r—1 a-1
= Z ZMk (Z ’@i(%k)ﬁ) wa(k+1)(l’)wa(k+1)(y)
a= 7’1,(5 k=0 ]:0

n() 4 Ms—1 ar—1
+ Y M, <Z goi(%)@i(w)) D0 (2) a0 (y) =2 J1+ o,
=0

a=n(s)

where x € G, y € I,(z) \ I,11(x).
mo—1 me—1—1mp41—1 ms—1—1 my—1
P I Sl I (z (o) T>¢<x,y>),
a0:0 ar,1:0 ar+1:0 a571:0 ar=0

where ¢(x,y) is not depend on a,. By the (2.2) equality which is in
the proof of Paley lemma, it is valid that J; = 0.

mo—1 ms—1—1 fa,—1
Jp=M, Y e Y (Z @i(%)@ﬂ%)) Y1) (2)Ptren (1)-

ao=0 as_1=0 \ j=0
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It is clear that J, is not depend on aq,as, ..., a,_1, for this reason
myr—1 [far—1 Myy1—1 ms—1—1
ne'S (z Aa7in) 3 S ety
ar=0 ary+1=0 as—1=0
mr—1 [far—1
~2'3 (5 i)
ar=0 \ j=0
s—1 m;—1
< |1 (Z o (z)e) (v ) Y (2) 0 (9).
I=r+1 ap

By (2.2) we can state that Jy is 0 if z; # y; for any r < [ < s. Since
G is a bounded group, if x; =y, ,r <[ < s we have

|Kn(s),Ms (x,y)| < cM,.Md, ).
Then denoting by
A = {y € G ‘Yo = Toy s Yr—1 = Tr—1,Yr 7£ L,
JYrdl = Tpgls oy Yool = T 1),

we have

/ | K, (2, ) [dp(y) < / cM, Md,, . du(y) =
(@)\Ir+1(x) A

= cM, M, m

< CM dn(s .

Since n > M), by (2.21) and (2.22)

C
K(z,9)|d <—§stdns+ > Myd,o <
/m )\Ir+1(l?)| (@ u)lduly) M, & T My "

c
< M,d
i n(m T
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Then

c
/ | Kn(, y)lduly) < i M dyo (In] =+ 1).
(@)\Iry1(z) In

G is a disjoint union of sets I,.(x) \ I,41(x), r € N, where x is a fix
element of G. If r > |n|, the |K,(z,y)| kernels depend only on x if
y € I.(x). For this reason if z € G, then we get that

n—1 n
1
| K2, 2)| < = Mycd,i) < C My,
120 ko
and hence
S [ Gl = [ Kl da
r=In|+1 I (z)\Ir+41(z) I|n‘+1(]))
‘Kn(wax)‘
= < C.
My
d("])
Since < — 1t follows that

m; V2
/|K ,y)|dp(y) Z/I - n(@, y)ldu(y)

nl

<Z

n Mn n 1
< “ 4 ‘"')ZA@ A (nf —r+ 1)+ C

In|—1

() |n|—7‘+1)+c

[e.e]
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for each x € G, where m,...m,—1 = 1 if » = |n|. Since the above
series is convergent, for each x € G there exists a C' positive constant
such that

/G Ko 9)lduly) < C.

This completes the proof of the lemma. n

In analogous way we can prove that there is C' positive constant
such that

sup /G Ko, )\ du(z) < C.

yeG
From above lemma we can get

Theorem 2.3.2. If G is a bounded group and f € LP(G), 1 < p < 0,
then o, f — f in LP-norm.

Proof. 1t is sufficient to prove that o, operators are uniformly of type
(p,p) when 1 < p < oo, since the o,f — f convergence is valid
for each representative functions and for this reason we can apply
the theorem of Banach-Steinhauss. From the interpolation theorem
of Marczinkiewicz [24], it is sufficient to prove that o, operators are
uniformly of type (1,1) and (00,00). From Lemma 2.3.1, using the
theorem of Fubini, if f € LY(G)

lowflh < / /G PO (e, 9)lduy)dp(z) =
- / @) / Ko, 9)ldu()duy) < ClfIl.
G G

Then o, operators are uniformly of type (1,1). If f € L>*(G)

lonfllee < ||f||wL|Kn(.,y)\du(y)llm < O flloe-

Then o,, operators are uniformly of type (0o, 00). This completes the
proof of the theorem. O
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Finally, we remark that Gat in [9] proved the pointwise convergence
o.f — fae (f € LY(G)). For the the Walsh case this proved by
Fine [4], and for bounded (Abelian) Vilenkin groups proved by Simon
and Pal [28]. The two-dimensional (Walsh) case o,,,f — f a.e. is
discussed by Shipp, Méricz and Wade [16] (min(m,n) — oo, f € H*
(which is a certain “hybrid” Hardy space)), and by Géat [9] (m,n — o0),
provided the integral lattice points (m,n) remain in some positive
cone, f € L').
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Chapter 3

Fourier coefficients and
absolute convergence

Before we see our statements in this chapter, we should remark that if
the group G is not Abelian group then the system v is not bounded.
This fact is important because the norm of the operators

T, : LYG) — C, T.f ::/f@du
G

is ||¢n|loo. For this reason if the group G is not Abelian then there
is a f € L'(G) such that ]/”\(n) - 0, so the well known Riemann-
Lebesgue lemma is not valid for non-commutative cases. In Section
3.1 we estimates of the Fourier coefficients of a function in L'(G)
using it’s modulus of continuity (see (2.11) and (2.12)). We should
not be surprised that ||1,| s appears in the estimation. We give the
concept of function with bounded fluctuation which was introduced
by Onneweer and Waterman [18].

Benke in [2]| was proved that the Lipschitz class to which a function
belongs can be identified by the best approximation characteristics of
the function by trigonometric polynomials, and that functions which

57
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are easily approximated by representative functions have absolutely
convergent Fourier series. In Section 3.2, we study the absolute con-
vergence of Fourier series based on the system of characters of G for
functions which are constant on the conjugacy classes of G.

All of the results in this chapter appeared in [11].

3.1 Estimates of the Fourier coefficients

In (2.12) we can observe that w,(f, ) is a measure of the oscillation
of f on I. Thus we say that a f function is of p-bounded fluctuation
for some 1 < p < oo if

Vo :
sup ( 3 [w(f, In(k*))lp> < o,
k=0

neN

where k* = (ko,k1,...) € G. A function is said to be of bounded
fluctuation if it is of 1-bounded fluctuation. In this case define the
total fluctuation by

neN

FU(f) := sup (Z w(/. fn<k*>>|) .

In order to prove the theorems of this section we first prove the
following lemma. 7, represent the left translation operator (see (1.6)).

Lemma 3.1.1. Let f € L'(G), n, k € N. If n > My, then there is a
h € I, such that

7 f(n) — F(n)| > |F(n)].

Proof. Denote by s = max{j € N : n; # 0} and let p be an arbitrary
element of G5. Moreover let h(p) be the element of G with expansion
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h(p) = (e,e,..., e ,p, e,...). Then h(p) € I, C I. If ¢ is a
01 15 st1

normalized coordinate function of the group G,, then there exist a
o€ X, and i,j € {1,...,d,} such that

e = Vdou7.

Using the fact that the measure p is both right and left translation
invariant and n < My, we have

o F () = /G F (@) @R ) dia(z)

= /G f(x)ps(zsp™) 1:[ o) dp(z)

s—1

- /G P () o) [ orln) dis(z)

=0
- /G PV S ul (wn)ul?) (o) T o) dua()
=) [ SN ) [T ot dute)

The coordinate functions form an orthonormal system:

> u(p) = m, / w7 (@) dps(2) =0 = D Ty f(n) = 0.
pEGS Gs pEGs

o — o~

On the other hand, 74 f(n) = f(n). Denote by (., .) the inner product
(for the complex numbers a+br, c+dv (a+ b1, c+di) = ac+bd). Thus

Fo)+ Y mpf)=0 = [J)P+ Y Tup/n), f(n)) =0.
pGGs pGGs
pFe pFe



60 CHAPTER 3 FOURIER COEFFICIENTS AND ABSOLUTE...

Then there exists a p € Gy, p # e such that

— ~ o — ~

(T f(n), f(n)) <O = [ f(n) = f(n)| = [f(n)].
This completes the proof of the lemma. ]

Theorem 3.1.2. Let f € L'(G), n, k € N. If n > M, then

[F)] < wr Ao

Proof. Let h be an element of G with satisfies the conditions of above
lemma. By linearity of ~ we see that

Fl < [ruf(n) = Fio)| = I = (o)
=1 [ (@) = )@ o)

< IS = fllallenlloo
< wr(f)leonlloo

which was to be proved. Il

Similarly, we prove the following statement

Theorem 3.1.3. Denote by n € N and s = max{j € N : n; # 0}. If
f is of bounded fluctuation, then

3"6( )

1F(n)] < 2219l |o-

Proof. Let h be an element of G with satisfies the conditions of above
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lemma. By linearity of ~ we see that

F)| < nf(n) — Fn)| = [mnf — ()
oy / () — F(@))in@) dpu(z)|

< / I f () — ()] da() [n]loo

Ms—1

=3 [ I S
~ * FU(J)
wa (RNl < =37 Ml

S

since the sets I;(k*) (0 < k < M, — 1) are disjoints, cover the set G
and pu(15(K")) =

L This completes the theorem. Il

s

3.2 Absolute convergence of functions in

(€

Denote by pp the number of conjugacy classes of the finite groups
Gy (k € N). With them we construct the sequence Pyi1 := piPy
k € N (P :=1). Then every n € N can be uniquely expressed as
n = ZZO:() npPy, 0 < ng < pg, ng € N. This allows one to say that
the (ng,n1,...) sequence is the expansion of n with respect to the
sequence (po, p1,y-- - )-

In addition, denote by x§ = 1, x&,...,x2* " the characters of the
representations of the group Gj and let di be the dimension of the
representation corresponding to the character Xi~ Then we obtain the
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characters of GG in the form

anHxZ’“ (n:anPk; k e N).
k=0 k=0

We restrict the space LP(G) for the functions that are constant on
every conjugacy classes of G. We denote this new space by LP(G).
The system of characters x = (xn,n € N) of a non-abelian group is
not complete in L'(G), but it is orthonormal and complete in L!(G).
We denote by A the set of functions which have absolutely con-
vergent Fourier series based in the system of characters of G. The
Lipschitz class of order o will be denoted by Lip(«). It is a closed
subspace of the continuous functions endowed with the norm

1/ lip(@) := sup {sup [|f(z-) = f (oo M| + [[f]loo-
k IEEIk
The following two lemmas are used in the proof of the theorems

bellow.

Lemma 3.2.1. Let f : G; — C, j € {0,1,...,p; — 1}, i € N. Thus
there is a h € G; such that (if x] Z1)

3" Fa)xi ()

zeG;

3" Fah)xi(@) = 3 fa) (@)

CCEGi CCEGZ'

>

Proof. Let x € G;. For simplicity we assume that the complex number

A= — Z f(x)x)(z) is on the first quadrant of the complex plane.
zeG;
If the complex number B(h) := Z f(zh)x!(z) is also on the first
zeG;

quadrant for some h € G;, then our statement follows for this h € G;.
If B(h) is on the fourth quadrant of the complex plane for some h € G,
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then we change h by h~' and using the property x?(h~!) = x!(h) we
have that B(h™!) is on the first quadrant, so we proved our statement
for h=! € G;. On the other hand,

>3 fhd@) = 30 3 @il

heG; zeG; heG; x€G;
G 8 a4
=2 2 f@ ™) =3 Y @)Y Y (o)
heG; zeG; r=1 heG; zeG; r=1 s=1
#
=2 (Z ! <x>@<x>) >l (h) =
rs=1 \z€G; heG;

Thus we have that there is a h € G; so that the corresponding complex
number B(h) is on the first or fourth quadrant of the complex plane.
This completes the proof of the lemma. Il

Lemma 3.2.2. Let f € LYG), P, < k < P,.y (k,n € N). Then
there is a h, € G, and h := hpe, = (e,e,... e, hy,e,...) such that

~ ~

7 f (k) — F(k)| > | f(K)|-
Proof. Let x € G, k1) i= Yo1g kiPs.

r@h ™) = [T (Hx ) Xer (xh™t)

- Xk(n_1)< )Xn (Ihil)‘

Define ¢ : G,, — C by

glan) = M"Y (Ban /) (@)X, (2) (w0 € Ga):
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Thus f(k) =m;" 32, e, 9(@a)X0" (2),

nf(k) =m;" > gla)xi (™) =myt Y gl k)X (@),
Tn€GH Tn€Gp

Finally, Lemma 3.2.1 completes the proof of this lemma. m

Theorem 3.2.3. Let supm < oo, f € L2(G). If

n=0

0o M,—1 %
Z (Z Ww®(f, [n(k*))’2> < 00, then  feA.

Proof. Let P, < k < P,.1, a := k,. Lemma 3.2.2 guaranties that
there is a h = (e,e,...,e,hy,,e,...) such that

o~

7 f (k) — F(k) > | f(K)|-

From the Cauchy’s inequality we have

NI

nz !f(k)|dk§<nz (dk)2> Z_ Z ’J?(/f)|2

k=P, k=P, a=0 k=aP,

NI

§<§<dk>2> ”z St - JP

k=P, a=0 k=aP,

pn—1

< VM Z 17y f — fII3,
a=0

pzfl
since dj, = Hd Z =m; (i € N). x is an orthonormal
ki =0
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system, then we can use the Bessel’s inequality. On the other hand,

M,—1
Myt f = F13 = Mupr 3 / Flah) - f(2)P de
k=0 “In(k*)
My—1

<my Y WP L (R)))
k=0

Since p, < m, (and sequence m is bounded), then

Popai-1 M, —1 1
> 1fR)|d < my, (Z lw@(f, ]n(k*))|2) .
k=0

k=P,
Thus
2
1= D 1F Rk <may | Y WP L) | < oo
k=0 n=0 \ t,€G;
i<n
This completes the proof of the theorem. O

From the proof of the theorem we obtain that if f € £L2(G) and

M, —1

Zmn<z \w@)(f,ln(k*))y?) <oo, then feA
n=0 k=0

independently of the fact that m is bounded or not.
The following statement is the generalization of a similar statement
appeared in [24].
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Theorem 3.2.4. Let f : G — C a continuous function that is cons-
tant in the conjugacy classes of G and suppose that exists a 1 < p < 2
such that

o0

Z Z lw(f, LE)P | < oc. Then feA.

n=0 t;eG;
<n

Proof. Since f € L*(G) we have

1
2

S5 1,0) = sup |, [ PUCEDENES is]

hely

< sup [f(z+h) = f(2)] = w(f, 1(2)).
z€ln(t)

Thus

> (Z w®(f, fn<k:*>>yp) < 0.

n=0 k=0

1 1
N 3 N »
Using the inequality (Z ]ai|2> < <Z\ai|p> (1 <p<2) we

=1 =1
have
DD WP L)) | < oo
n=0 t;€G;

<n

That is, the the conditions of Theorem 3.2.3 is fulfilled. This completes
the proof of this theorem. n
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Corollary 3.2.5. Let f: G — C a continuous function that is cons-
tant in the conjugacy classes of G and suppose that

oo

Z VMuw,(f) < 0o (supm < 00).

n=0
Then f € A.

Proof. The corollary is a consequence of the theorem since

w(f, In(t)) Swn(f)  (t€G).
For this reason

> ( 3 W, fn<kz*>>|2> <3 VMn(f) < oo
k=0 e0

n=0 =

This completes the proof of this corollary. Il

Corollary 3.2.6. Let f € Lip() for some a > % (supm < 00). Then
feA

Proof. w,(f) <eM;“ (n € N), thus

i vV Muwn (f) < cil\/[é_a < 00.
n=0 n=0

Thus the conditions of the previous corollary is satisfied. O
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Chapter 4

On Hardy-norm of operators
with property A

The property A of operators was introduced by Schipp in [21] and he
proved that some boundedness property with respect to LP-norms of
this operators are inherited by the sum of them. In Theorem 4.1.1
we resume these results. Several operators occurring in the theory
of martingales can be given in this form. Renowned examples are
the martingale-transforms that obviously are of this form, but more
complicated sums of operators having the property A will be also
considered in this chapter, i.e., the conjugate martingale transforms.
Another interesting example is given by Gat in [8], [7] and [6] and by
the author of this work in [29], [30] and [31] named ¥« or Vilenkin-like
systems. This chapter shows the results appeared in [32].

In Section 1 we introduce some concepts and resume the results
of [21]. Furthermore, we prove a lemma which we often use through-
out this chapter and state the theorem of Hausdorff-Young for finite
groups. The extension of Theorem 4.1.1 to the Hardy and BMO-
norms are given in Section 4.2.

Schipp applied Theorem [21] to prove the significant result that the
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Fourier-Vilenkin expansions of the function f € L? converge to f in LP-
norm (1 < p < 00). Similarly, in Section 4.3 we use our statements to
show that the conjugate martingale transforms with matrix operators
acting on the generalized Rademacher series of Vilenkin groups are
bounded on L, H?, BMO, and H§ forr =p,q (p >2,1/p+1/q¢=1)
in so far as these matrices are uniformly of type (7, /) and uniformly
bounded on ¢2. These transforms was first introduced by Gundy [12]
and the above results was proved by Weisz [37] for bounded Vilenkin
groups.

4.1 Preliminaries

Let ({2, A, ) be a probability measure space and (A,,n € N) be a
sequence of o-algebras for which

0,0} =Ayc A C---CA,C---CA

and A = U(U Ay). Let B C A be a o-algebra. Denote by LP(B) the
n=1

complex Lebesgue space LP(£2,B, u) for 1 < p < oo, LP := LP(A), L°

the set of A measurable step functions and L§ := {f € L? : Ef =0},

where F f is the mean value of the complex function f.

The set L C L' is say to be a B-linear subspace, if for every
function f,g € L and A, Ay € L®(B), we have A\ f + \og € L. A
mapping 7' : L — L' defined on the B-linear subspace L C L' will
be called B-linear, if for any f,g € L and A\, Ay € L>®(B) we have
T(Aif +Xag) = MTf + XTg.

The conditional expectation operator of the function f € L! rela-
tive to the o-algebra B will be denoted by E(f|B), furthermore E,, f :=
E(f|A,) and Ef = Eygf. We say that the mapping T : LF — L9,
1 < p,qg < oo has type (A,,p,q) if there exists a C' > 0 such that for
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all f e LP

B =

(4.1) (E|Tf]9)1 < C (Ea|fIP)

In the same way let X,Y be two normed spaces with ||.||x and
II.|ly norms, respectively. The operator T': X — Y is of type (X,Y)
if there is a C' > 0 such that

ITflly <Cllfllx  (f € X).

If X =Y we only say that T is bounded on X. In case X = LP and
Y = L7 we will say that T is of type (p, q).
The operator T': L' — L' is B-selfadjoint if for every f,g € L!

(4.2) E((Tf)3|B) = E(fTg|B).

In this chapter we often use the concept of dual space. If X, Y C L!
be two normed spaces with ||.|[x and ||.||y norms, respectively, then
the fact that the dual space of X is Y (X’ =Y) consists of two parts
namely

(a) an inequality:

[E(fP) <allflxlely  (feX,peY),

where
E(f7) = lim E(E,[Ep)

(b) every linear bounded functional L on X is of the form

L(f) = E(f%),

where p € Y and ||¢|ly < e L]
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Further, we introduce the following notations relative to the mar-
tingale (E,f, n € N, f € L}).

Anf = Enf - En—lf (AO = 0)7
f*:=sup|E,f],

neN

(Z |Anf\2> ,

S(f) = (Z En—1|Anf|2) :

S(f) -

It is clear that
(43) En o Em = Emin(n,m)> An o Am = 5mnAn (n7 m e N)7

where 9,,, is the Kronecker symbol.
We say that the sequence of operators (7,,n € P) satisfy the
condition A if

(A) T,0A,=A,0T,=T,.
From (4.3) we can show that if the condition A is satisfied then

TnoEn:EnoTn:Tna

(4.4)
Ey10T,=T,0E, 1=0

(n e P).

F. Schipp [21] discovered that some boundedness properties of opera-
tors T), are inherited by the operator

Tf:=)» T.f.
n=1
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Theorem 4.1.1 (F. Schipp [21]).

(1) Let 1 < p < o0, and let T,, be a A,,_1-selfadjoint linear operators
with property A (n € P). If the operator T is of type (p,p), then
it is also of type (q,q), where 1/p+1/q = 1.

(1i) Let (T,,,n € P) be a sequence of linear operators with property
A and let p > 2. If the operators T, are uniformly of type
(An-1,2,2) and (A,_1,p,p) then the operator T is of type (p,p).

(iii) Let (T,,,n € P) be a sequence of A,_1-linear operators having
property A. If T,, is uniformly of type (An—1,2,2) and (Ap—1,1,1)
at the same time, then T is of type (2,2) and of weak type (1,1),
i.e., there is a positive constant c¢ such that for every number
y > 0 and every function f € L!

ITf1 >y} <cllfla/y.

In Section 4.2 we prove the same statements on martingale Hardy
and BMO spaces. In this regard we prove the following lemma.

Lemma 4.1.2. Let X,Y C L' be two Banach spaces wherein the set

of step function L° is dense and X' =Y. Suppose that (T,,n € P) is

a sequence of A,_1-selfadjoint linear operators with property A. If the
N

operators Z T, are uniformly bounded on X, then T s also bounded

n=1

onY.

Proof. First we prove that there is an absolute constant C' > 0 such
that for every N € P

N
> Tug
n=1

<Cllelly  (p€L.
Y
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Thus we obtain our statement as a consequence of the theorem of
Banach-Steinhaus.
By the concept of dual space we can show that

(4.5) lelly < cosup{|E(fR) - Ifllx =1} (peY).

Let K, N € P, f € X, |fllx =1, ¢ € Y and denote Gy := SN T,
Then by (3) and (4) we have

N
E(ExfEGng) = Y E(EvfT Exp).

n=1

Using that T, is A,,_1-selfadjoint, we obtain that
E(EyfT,Ewp) = E(E\T,fErp),
so by the inequality in the concept of duality
|E(fGro)| = lim |E(EyfEGNe)| = lim |E(EGy fErp)| <
<alGnflixlelly <cllflixllelly = clelly

because the operators GGy are uniformly bounded on X. Since Gy €
Y, by (4.5) we have

IGnelly < cxsup{|E(fGno)| « Ifllx = 1},

from which our statement follows. O

In Section 4.3 we use the Hausdorf-Young inequality for cyclic
groups Z,, := {0,1,...,m — 1} with measure p such that the measure
of a singleton is 1/m. It’s character system

r(z) = exp(2mwikx/m) (0<k<m)
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is the generalized Rademacher system. For every f: Z,, — C denote
by f: Z,, — C, the Fourier transform of f, that is

f(k) = fredp  (0< k <m),

Zm

and set

£l = ( 2_: |f(k¢)|p>p, [ fller := (i |f(k¢)|p>

Sl=

Theorem 4.1.3 (Hausdorff-Young). Let1 < ¢ <2and1/p+1/q =
1, then for every function f : Z,, — C we have

(i) 1 llee < N1 £l
and
(ii) 1£lp < 11Flles-

4.2 Martingale Hardy and BMO spaces

Throughout this work we use the notations employed by F. Weisz
in [38], and C' > 0 will denote an absolute constant which will not
necessarily be the same at different occurrences. For 1 < p < oo we
shall consider the following martingale Hardy spaces:

Hy = {f € Ly : | fllmg = Is(H)llp < o0},
Hy = {f € Ly | flug = [IS(f)ll, < oo},
Hy = {f € Ly : |fllm; := [If"[lp < oo},




76 CHAPTER 4 ON HARDY-NORM OF OPERATORS WITH. ..

and BMO spaces

BMO; :={p € It : I¢llpuo; = sup | (Bl — Biagl)? | < oo},

1
BMO, = {¢o € L : lllsrio, = sup | (Bele — Biel?)?

< 00}
oo

If every o-algebra A, are generated by finitely many (set) atoms
(e.g m is bounded) then we define the VMO spaces by

=0},

o

—0}.

1
VMO, = {p € BMO; : lim |(Eile — Bl

VMO, :={p € BMO,: 1}1—{20 H(Ek|90 - Ek‘Plp)%

Before we state our results it is necessary to remark that the series

Z T, is finite in the set L = U LP(A,) or L° (L and L° are every-
n=1 neP
where dense in L? since the o-algebras A, generate A [12]). Thus in

the case that the operators T,, are linear, from the theorem of Banach-
N

Steinhaus, if the series Z T, (N € P) are uniformly bounded on the

Banach space X, then ‘glhel operator T is bounded on X. The normed
spaces that appear in this work are Banach spaces in which the set L°
is dense.
On the other hand, if the operators T,, are uniformly of type
n

(A,-1,2,2), then the stochastic sequence (Z Ty fs An)n>1 1s a uni-
k=1
formly integrable martingale for f € L?. This follows from the ine-

quality
2

< 00 (f € L?).

N

> Tif

sup £
N k=1
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which was proved in [14]. In this case the series Z T} f is convergent

k=1
with probability 1.

In addition if 7,,(LP) C L? (n € P) for any p > 2, then T is
bounded on L” that is the linearity of 7, is not required in the point
(17) of Theorem 4.1.1.

First we extend Theorem 4.1.1 to the spaces H, and BMO,,.

Theorem 4.2.1. Let T,, (n € P) be operators with property A and
uniformly of type (An—1,2,2). Then the operator T is bounded on H;

(p>1).
Proof. Let p > 1 and f € H,. The stochastic sequence

(z I An>
k=1
is a martingale, therefore we have

Y Tf|| = (ZEk_erkAka)
n=1 k=1

Since the operators T,, are uniformly of type (A,_1,2,2), there is a
positive constant ¢ such that

n>1

1

2

Hp

Ep | Tef1? < cEpa|fI? (k e P).

Consequently,

> T.f
n=1

from which our statement directly follows. O

2

<c (Z Ek—1|Akf|2> = | f|
k=1

p

s
Hp7

Hp
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Theorem 4.2.2. Let T,, (n € P) be operators with property A and
uniformly of type (An—1,2,2) and (An_1,p,p) at the same time for
some p > 2 . Then it is valid that

(i) The operator T is bounded on BMO,,.

(i1) If the operators T, are linear and A,,_1-selfadjoint then T is also
bounded on BMO,,, where 1/p+1/q = 1.

Proof. Let ¢ € BMO,. Then

=sup ||| Ex
k>1

Let k£ € P and choose A € Aj. Then the operators XAT n > k)
have property A and are uniformly of type (A,_1,p,p), since

(4.6) np

2. an

n=k+1

BMO,

-E%—”XAY%fV)S E%—ﬂj%fV7§;CE%—ﬂfV7

(the constant ¢ is not depend on the set A). Hence, from the point
(ii) of Theorem 4.1.1 using that BM O, C L{ we have that for every
felr(p>2)and A€ Ay

> Toe

n=k+1

p p

> Ang

n=k+1

(4.7) Exa < cExa

b

from which we have

> Te

n=k+1

p
< cEj

p
S C£%|¢'_-Ekwvz

D A

n=k+1

and from (4.2) we obtain

n¥

1
< csup H(Ek\so — Epp|?)»
k>1
BMO,

= c[|¢l|Bnmo,
o0
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which was to be proved.

The proof of (ii) is based in the lemma for X = L{, Y = L{ and
T=N, +1 XaTy, from which we obtain (4.7) for ¢ in place of p and
for finite sums. Then as before, we obtain our statements from the
theorem of Banach-Steinhaus.

This completes the proof of the theorem. O

Using the interpolation argument for BMO, C Ly C Hy (p > 2)
we have

Corollary 4.2.3. Let (T,,,n € P) be a sequence of linear operators
with property A. If for any p > 2 the operators T, are uniformly of
type (An_1,2,2) and uniformly bounded on BMO,, then the operator
T is bounded on BMO,, Ly, BMO, and L{ where 1/p+1/q = 1.

Similar statement is valid for BMO, and H{f . In this regard we
use the equivalence of the BMO, spaces (1 < p < 00), hence denote
everyone by BMO; . Furthermore, we also used (see Garsia [5]| and
Weisz [38]) that the spaces H and L are equivalent for p > 1. For this
reason we restrict our attention to H{. Denote by BD, (1 < p < c0)
the spaces of functions f (Ff = 0) such that

| fllBp, == | sup |Anflllq < oo

Theorem 4.2.4. Let (T,,n € P) be a sequence of operators with
property A. If the operators T, are uniformly of type (A,_1,2,2) and
uniformly bounded on BMO5 then the operator T is also bounded on
BMO; . In addition if the operators T, are linear, A,,_1-selfadjoint
and the o-algebras A,, are generated by finitely many atoms, then T is
also bounded on HY .

Proof. Using the inequalities in [38]

(4.8) sup{llellsro,, lvllsp. b < llvllsmo;
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and

(4.9) el Baro; < llellBrmo, + ll¢llBo.;

we obtain from the corollary that

1T el paroy < 1T¢llBro, + [ Tellp. < cllellzmo, + [ TnellBp. <
< C”SOHBMo; + ||Tn€0”BMo; < C”‘PHBMO;

which means that 7" is bounded on BMO; .

F. Schipp [23] was proved that if the o-algebras A,, are generated
by finitely many atoms, then (V MO, )* = HY. Thus the linearity of
T, guarantees that the conditions in the lemma are satisfy by X =
VMO;,Y = H?.

This completes the proof of the theorem. n

Finally we prove a similar statement to the point (iii) of Theorem
4.1.1 using the Davis decomposition of martingale of HY.

Theorem 4.2.5. Let (T,,,n € P) be a sequence of linear operators
with property A. If the operators T,, are uniformly of type (A,_1,2,2)
and (A,_1,1,1) at the same time, then T is bounded on H} .

Proof. First we introduce the following space

> 1AL
n=0

Sp={feLg:fls, =

< o0}
p

It is easy to check that
1A lles < W fllse (f € Lo).

Let f € HyY. From Davis decomposition we have that there exist
g € G and h € Hj such that f = h + g and

lgllg < cllfllmg, Al

my <l fllas-
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We can readily verify that if the operators T), are uniformly of type
(An—1,1,1) then T is bounded on G;. From Theorem 4.2.1 T' is also
bounded on Hj. Using the

1f g < el f]

o (f € L)
inequality we have

1T f g = 1T+ 9)wg < NThlu; + 1 Tglls, <
< cllhllas +cllglls, < el fllag

which was to be proved. O

4.3 Conjugate martingale transforms

In this section suppose G is a Vilenkin group (see Chapter 1). Denote
by A, the o-algebra generated by the finite sets I,,(z), * € G and
n € N. Then Ag C A; C ... C A and A = o(J,2, As), where A is
the o-algebra which contain the measurable sets. Set

n—1

Sof =Y E(fie)tr.

k=0

It is easy to see that
(4.10) E,_1f(z) = Sy, f(z) = Mn/ fdu (x € Gpy,n € P),
Infl(ac)

and the martingale difference sequence is given by

mp—1

(4.11) Anf = Ena(frirk.
k=1
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The transform which first were introduced by Gundy [12] is given
at follows. Let A := (A,,n € P) be a sequence of complex matrices
with m,, — 1 rows and columns, respectively. We assume that the
Euclidean norms of A,, (n € P) are uniformly bounded, i.e. A, are
uniformly bounded on ¢2. Define the operator T}, by

mp—1

T.f = Z (Anvn)(k)rfl

k=1

where v, = (E,_1(frk))"!. Then we say that the operator T :=
> T, is a conjugate martingale transform. If the A, matrices are
diagonal we obtain a multiplier transform. We should remark that P.
Simon [26] used a concrete multiplier operator to prove the conver-
gence of Fourier series in LP-norm (1 < p < 00).

It is easy to see that (7,,,n € P) is a sequence of A,,_;-selfadjoint
linear operators with property A. From Theorem 4.2.1 and 4.2.2 we
can state that

Theorem 4.3.1. Let p > 2 and 1/p+1q=1. If the matrices A, (n €
P) are uniformly of type ({7, (P) and uniformly bounded on ¢* then T
s a bounded operator on L", H?, BMO, and H{ for r=p,q.

Proof. Tt will be sufficient to show that the operator 7, are uniformly
of type (A,_1,p,p). In this regard note from (4.11) that A, f in es-
sential, is given by a Fourier sum defined in Z,,,. Hence it is sufficient
to prove that for every cyclic group Z,, of order m, for every function
f: Z, — C with f(O) = 0 and matrix A : C™! — C™ ! with
Euclidean norm || A|| the operator

m—1
Taf = Z(Af)(k)rk-

k=1

satisfies the inequality

[Tafllp < [[Alleaeo |l fll-
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Since the Fourier coefficients of T4 f are 0 for k = 0 and (Af)® for
1 < k < m, from the theorem of Hausdorff-Young we have

1
m—1 q
N q A~
| Tafll, < (Z ‘(Af)(k)‘ ) = [(Af)]lea <
k=1
< || Allea,eo || fllee < N Alleaeoll Fllg < I Alleaeo | £

which was to be proved. n
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Summary

In this dissertation we discuss the convergence in norm of Fourier
series and Fejér means with respect to a natural generalization on the
Walsh-Paley and Vilenkin system. We take the complete product of
arbitrary finite group (not necessarily commutative) and use the way
given in the theory of harmonic analysis to introduce the orthonormal
and complete systems with which we work (see [14]). These systems
are called a representative product systems.

In Chapter 1 we study the structure of this groups and systems
giving some examples in order to a better comprehension. Let G
denote the compact group formed by the complete direct product of
finite groups G} with the product of the topologies, operations and
measures (u). Let {¢f : 0 < s < |G|} be the set of all normalized
coordinate functions of the group Gy, and 1 be the product system of
¢;. The functions 1, (n € N) are not necessary uniformly bounded,
so define

Uy = max [[¢n[1f[Ynfle (K €N).

The sequence V¥ plays an important role in the convergence of Fourier
series. At the end of this chapter we represent the group G and the
different systems 1, on the interval [0, 1] using Fine’s map (see [35]).

Chapter 2 summarizes the results of [10]. We introduce the basic
concepts of Fourier analysis and show the properties of the Dirichlet
kernels to study the convergence in norm of Fourier series and Fejér
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means. We also prove the Paley lemma for representative product
systems and state it’s consequences.

Lemma. (Paley lemma) If n € N and z,y € G, then

M, forx € I,(y)

DM,,,(Iay) = {0 forx & In(y) 7

where I,,(y) is the interval
L(y) ={zeG o=y, for0<k <n} (yeG,neN).

The partial sums of the Vilenkin-Fourier series of a function in
LP(G) (1 < p < o0) converge in the appropriate norm to the function
(Young [39], Schipp [21], Simon [26]). The statement above is not true
for all cases if we take the complete product of arbitrary finite group
(not necessarily commutative).

Theorem. If G is a bounded group with unbounded sequence ¥, then
there is a 1 < p < 2 for which the operator S,, is not of type (p,p).

In this chapter (see also [34]) we prove that for an arbitrary group
G there exists a function f € L'(G) such that the sequence of partial
sums S, f of the Fourier series of f does not converge to the function f
in L'-norm. We also introduce the concept of modulus of continuity to
give class of functions for which the partial sums of it’s Fourier series
converge to the function in L! or in the uniform norm.

Theorem. Let [ be a function in L'(G) for which the following con-
dition holds:

wi(f) = o( ¥y Z m;)~".

Then the sequence of partial sums S, f of Fourier series of f converges
in L'-norm to f.
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Theorem. Let f be a continuous function on G for which the following
condition holds:

k
wi (f) = o( Wy ka)_1~

Then the sequence of partial sums S, f of Fourier series of f converges
in uniform norm to f.

Theorem. Let f be a continuous function on G for which the following
condition holds:

S mi(f) < oo
k=0

and suppose the sequence W is bounded. Then the sequence of partial
sums Sy f of Fourier series of f converges in uniform norm to f.

Finally, we obtain an important positive result.

Theorem. If G is a bounded group, the Fejér means of a function
feLlP(@),1<p< oo converge to the function in LP-norm.

In Chapter 3 we estimate the Fourier coefficients which not neces-
sarily tend to zero, using the modulus of continuity of the function
and the uniform norm of the system. This results were appeared in
[11].

Theorem. Let f € L'(G), n, k € N. If n > M, then

~

[f ()| < wr(f)[4n]loe-
We specially study the functions with bounded fluctuation.

Theorem. Denote by n € N and s = max{j € N : n; # 0}. If f is
of bounded fluctuation, then

Fot < i g
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On the other hand, we consider an interesting class of functions,
namely the ones that are constant on every conjugacy classes. The
system of characters of the representations is complete in this class of
functions, so we use characters to study the absolute convergence of
series constructed in this way. We denote by A the set of functions
which have absolutely convergent Fourier series based in the system
of characters of G. The Lipschitz class of order a will be denoted by
Lip(«). Thus

Theorem. Let supm < oo, f € L3(G). If

) My—1 %
) (Z w®(f, fn<k*>>!2> <oo, then fecA.

n=0 k=0

Theorem. Let f : G — C a continuous function that is constant in
the conjugacy classes of G and suppose that exists a 1 < p < 2 such
that

S

i S W L@)P| <oo.  Then  fEA
n=0 t,€G;

<n

Corollary. Let f : G — C a continuous function that is constant in
the conjugacy classes of G and suppose that

Z vV Muwa (f) < 00 (supm < 00).

Then f € A.

Corollary. Let f € Lip(a) for some o > 1 (supm < o00). Then
feA.
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Chapter 4 treats the general case of product system adapting the
results of Schipp [21] for the convergence in Hardy and BMO norms
(see [32]). The property A of operators was introduced by Schipp in
[21] and he proved that some boundedness property with respect to
LP-norms of this operators T}, are inherited by the sum 7" of them. For
the different Hardy and BMO spaces we obtain

Theorem. Let T, (n € P) be operators with property A and uniformly
of type (An_1,2,2). Then the operator T is bounded on Hy (p > 1).

Theorem. Let T, (n € P) be operators with property A and uniformly
of type (An_1,2,2) and (A,_1,p,p) at the same time for some p > 2 .
Then it is valid that

(i) The operator T is bounded on BMO,,.

(11) If the operators T, are linear and A,,_;-selfadjoint then T is also
bounded on BMO,, where 1/p+1/q = 1.

Theorem. Let (T,,,n € P) be a sequence of operators with property
A. If the operators T,, are uniformly of type (A,_1,2,2) and uniformly
bounded on BMO5 then the operator T is also bounded on BMO, .
In addition if the operators T, are linear, A, _1-selfadjoint and the

o-algebras A, are generated by finitely many atoms, then T is also
bounded on HY.

Theorem. Let (T,,n € P) be a sequence of linear operators with
property A. If the operators T, are uniformly of type (A,_1,2,2) and
(An_1,1,1) at the same time, then T is bounded on HY.

We use the convergence of operators with property A to study the
conjugate martingale transforms defined on not necessarily bounded
Vilenkin group. The transform which first were introduced by Gundy
[12] is given at follows. Let A := (A,,n € P) be a sequence of complex
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matrices with m,, — 1 rows and columns, respectively. We assume that
the euclidean norms of A,, (n € P) are uniformly bounded, i.e. A, are
uniformly bounded on #2. Define the operator T}, by

mp—1

T.f = Z (Anvn) Bk,

k=1

where v, = (E,_1(frk))!. Then we say that the operator T :=
>, T, is a conjugate martingale transform. Weisz [37] studied these
transforms for bounded Vilenkin groups. For this transforms we can
state

Theorem. Let p > 2 and 1/p+1q=1. If the matrices A, (n € P)
are uniformly of type (09,0P) and uniformly bounded on (* then T is a
bounded operator on L", H?, BMO, and Hj for r=p,q.



Osszefoglald

Ebben az értekezésben a Fourier-sorok és a Fejér-kozepek normakon-
vergenciaval foglalkozunk, amelyeket a Walsh-Paley rendszer és a Vi-
lenkin-rendszer egy természetes altalanositasan értelmeziink. Tetszo-
leges véges (nem feltétleniil kommutativ) csoportok teljes direkt szor-
zatat vessziik és a harmonikus analizis elméletének segitségével be-
vezetjiik azokat a teljes ortonormalt rendszereket, amivel foglalkozni
fogunk (lasd [14]). Ezeket a rendszereket reprezentativ szorzatrend-
szereknek nevezziik.

Az 1. fejezetben ezen csoportok és rendszerek strukturajat vizsgal-
juk és néhany példat is megadunk a jobb megértés kedvéért. Jelolje G
azt a kompakt csoportot, amely elGall G, véges csoportok teljes direkt
szorzataként és rendelkezik a véges csoportok szorzat-topologiaival, -
miveleteivel és -mértékeivel. Legyen {¢} : 0 < s < |G|} a Gy, csoport
normalizalt koordinata-fliggvényei és ¢ a ¢, szorzatrendszere. A 1,
(n € N) nem feltétleniil egyenletesen korlatosak, ezért definialjuk:

Wy i= max [dli[énle (k€ N).

A U sorozat fontos szerepet jatszik a Fourier-sorok konvergenciéja-
ban. A fejezet végén reprezentaljuk a G csoportot és a kiilonbo6zs v
rendszereket a [0, 1] intervallumon a Fine-leképezés segitségével (lasd
[35]).

A 2. fejezet Gsszegzi a [10]-es publikacio eredményeit. Bevezetjiik a
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Fourier-analizis alapfogalmait és megmutatjuk a Dirichlet-magok tu-
lajdonsagait, amelyekkel bizonyitjuk a Fourier-sorok és Fejér-kozepek
normakonvergenciaval kapcsolatos allitasokat. Bebizonyitjuk a Paley
lemmaét reprezentativ szorzatrendszerekre és ennek kévetkezményeit.

Lemma. (Paley lemma) Han € N és x,y € G, akkor

M, haz e I,(y)

DMn(ﬂfay>: {O hax%ln(y) ’

ahol I,,(y) a kévetkezd intervallum:
L(y) ={z€G axpr =y, for0<k<n} (yeG,neN).

Egy LP(G)-beli figgvény (1 < p < oo) Vilenkin-Fourier sora kon-
vergal LP normaban a fiiggvényhez. (Young [39], Schipp [21], Simon
[26]). Az el6z6 allitdas nem igaz minden esetben, amikor vessziik tet-
sz6leges véges (nem feltétlenill kommutativ) csoportok teljes direkt
szorzatat.

Tétel. Ha a G csoport korldtos de a VU sorozat nem korldtos, akkor
van olyan p > 1 és olyan f € LP(G) figguény, amelynek Fourier-sora
nem konvergdl a fiigguényhez LP-normdban.

Ebben a fejezetben (lasd még [34]) bebizonyitjuk, hogy tetszdleges
G csoport esetén van olyan f € L'(G) fiiggvény, amelynek Fourier-
sora nem konvergél a fiiggvényhez L!'-normaban. Tovabbé bevezetjiik
a folytonossagi modulus fogalmat, aminek segitségével olyan fiiggvé-
nyosztalyokat adhatunk meg, hogy a Fourier-sorai konvergéljanak a
fiiggvényhez L'-norméban.

Tétel. Legyen f egy L'(G)-beli fiiggvény, amire teljesiil a kévetkezd
feltétel:
k

wi(f) = o(Vy Z m;) "
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Ekkor az S, f Fourier-sora konvergdl az f fligguvényhez L*-normdban.

Tétel. Legyen f eqy folytonos fiigguény G-n, amire teljesiil a kivetkezd
feltétel:

wi(f) = o(Wg ka)_l-

Ekkor az S, f Fourier-sora konvergdl az f fligguényhez uniform nor-
maban.

Tétel. Legyen f eqy folytonos fiigguény G-n, amire teljesiil a kivetkezd
feltétel:

kawgo(f) < 00
k=0

és tegyiik fel hogy a ¥ sorozat korlatos. FEkkor az S,f Fourier-sora
konvergdl az [ figguényhez uniform normdban.

Végiil egy fontos eredményhez jutunk.

Tétel. Ha a G csoport korldtos, akkor eqy LP(G)-beli figguény (1 <
p < o) Fejér-kizepei konvergdlnak a figguényhez LP-normdban.

A 3. fejezetben Fourier-egyiitthatok becslésével foglalkozunk, ame-
lyek ezekben a rendszerekben nem feltétleniil tartanak nulldhoz. Eh-
hez a fiiggvény folytonosségi modulusat hasznaljuk és a rendszer uni-
form normajat. Ezek az eredmények [11]-ben jelentek meg.

Tétel. Legyen f € LY(G), n, k € N. Han > M, akkor

~

|f ()] < wr(f)][¢onl]so-

Specialisan a korlatos fluktuéacioju fiiggvényekkel foglalkozunk.
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Tétel. Legyen n € N és s =max{j € N :n; #0}. Ha f egy korldtos
fluktudciogu fiiggvény, akkor

fn)] <

Mésrészrél egy érdekes fiiggvényosztalyt is tanulméanyozunk, ne-
vezetesen azokat a fiiggvényeket, amelyek allandok minden konjugalt
osztalyon. A reprezentaciok karakterrendszere teljes ezen a fliggvény
osztalyon, ezért karaktereket hasznalunk a sorok felépitéséhez és ezen
sorok abszolut konvergencidjat vizsgaljuk. A-val jeloljiikk azon fligg-
vények halmazat, amelyeknek van abszolut konvergens Fourier-sora,
melyek a karakterrendszeren alapszanak. Az « rendd Lipschitz osz-
talyt Lip(a)-val jeloljiik. Ekkor teljestil:

Tétel. Legyen supm < oo, f € L2(G). Ha

F(f)

[%n|oo-

0 My,—1 B)
Z<Z|W (f, I k?*))|) < 00, akkor feA

n=0

Tétel. Legyen f : G — C egy olyan folytonos fiigguény, amely dllando
G minden konjugdlt osztdlyan és tegyiik fel, hogy van olyan 1 < p < 2
ugy, hogy

3=

DDl L@ | <oo,  akkor  fe€A.
n=0 t;€G;

<n

Kovetkezmény. Legyen f : G — C egy olyan folytonos fiigguény,
amely dllando G minden konjugdlt osztdlydn és teqyiik fel, hogy

Z vV Muw, (f) < 00 (supm < 00).

n=0
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Ekkor f € A.

Ko6vetkezmény. Legyen f € Lip(a) valamely o > % (supm < o0).
Ekkor f € A.

A 4. fejezet a szorzatrendszer altalanos esetével foglalkozik (lasd
[32]) és railleszti Schipp [21] eredményeit a Hardy- és a BAM O-norma-
konvergenciara. Schipp [21] vezette be az operatorok A tulajdonsagat
és bebizonyitotta, hogy ezeknek a T), operatoroknak néhény LP nor-
matulajdonsagat szintén a T Osszegiik 6rokli. Kiilonbozé Hardy és
BMO terek esetén a kovetkezbket kapjuk:

Tétel. Legyen T, (n € P) A tulajdonsdgi és egyenletesen (A, _1,2,2)
tipusii operdtorok. Ekkor a T operdtor H, (p > 1) korldtos.

Tétel. Legyen T, (n € P) A tulajdonsdgi és egyenletesen (A,_1,2,2)
és (An_1,p,p) tipusi operdtorok, valamely p > 2. Ekkor igaz, hogy

(i) a T operdtor BMO, korldtos.

(1) ha még a T, operdtorok linedrisak és A,_1 dnadjungdlt, akkor a
T operdtor is BMO, korldtos, ahol 1/p+1/q = 1.

Tétel. Legyen T, (n € P) A tulajdonsdgi és egyenletesen (A,_1,2,2)
és BMO; korldtos operdtorok. Ekkor a T operdtor BMO, korldtos.
Ha még a T, operdtorok linedrisak, A,_1 onadjungdlt és minden A,
o-algebra véges sok atommal generdlhatd, akkor a T operdtor is HY
korldtos.

Tétel. Legyen T, (n € P) A tulajdonsdgi és egyenletesen (A,_1,2,2)
és (An_1,1,1) tipusii operdtorok. Ekkor a T operdtor Hy korldtos.
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A A tulajdonsagu operatorok alkalmazhatok a konjugalt martin-
gal transzformaciok vizsgalatanal, amelyek egy nem feltétleniil kor-
latos Vilenkin csoporton értelmezheték. A transzformacié, amelyet
Gundy [12] vezetett be, a kévetkez modon adhatéo meg. Legyen
A = (A,,n € P) komplex m,, — 1 x m,, — 1 tipusi maétrixok egy
sorozata. Tegyiik fel, hogy a A, (n € P) métrixok egyenletesen kor-
latosak az euklideszi norma alatt, vagyis egyenletesen korlatosak ¢2
norméban. A T, operatorokat a kovetkezd modon értelmezziik:

mp—1

T.f = Z (Anvn) Bk,

k=1

ahol v, := (E,_1(frk))y . Ekkor azt mondjuk, hogy a T := >°° T,
operator egy konjugalt martingal transzformacio. Weisz 37| vizsgalta
ezeket a transzforméciokat korlatos Vilenkin csoportokon. Ezekre a
transzforméaciora a kovetkezd allitas érvényes:

Tétel. Legyen p > 2 és 1/p+1q=1. Ha az A, (n € P) madtrizok
egyenletesen ({1, (P) tipusiak és egyenletesen (% korldtosak, ekkor a T
operdtor L", H?, BMO, és H{ korldtos, r=p és r=q esetén.
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